
Engineering Privacy at the Edge 
A Practical Guide to Differential Privacy

in System Architectures 

Olivera Kotevska
Oak Ridge National Laboratory

Wenjun Yang
University of Washington Tacoma

Eyhab Al-Masri
University of Washington Tacoma



Tutorial Overview

Learning Objectives 

Understand differential privacy concepts and mathematical 
guarantees

Survey practical algorithms across classical and modern 
approaches

Explore correlation-aware privacy mechanisms for structured 
data

Gain hands-on experience with PETINA and MIC-DP tools

Learn to integrate DP into edge computing architectures

Target Audience:



Motivation: Privacy Challenges at the Edge

The Problem

Modern distributed and edge systems continuously generate vast
volumes of sensitive data across autonomous vehicles, IoT devices, mobile
health monitors, and industrial controllers. Traditional anonymization
methods prove insufficient against modern re-identification and
correlation attacks.

System-Level Constraints

Edge and embedded environments impose strict latency and energy
budgets, complicating the direct adoption of differential privacy
mechanisms originally designed for centralized cloud platforms. Resource
constraints limit applicability of traditional privacy-preserving methods.

Solution: Differential Privacy provides a rigorous 
mathematical framework enabling useful data analysis while 
bounding risk to individual information. 
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What is Differential Privacy?

Formal Definition

(D1 ) ∈ S] ≤ eε ⋅ P[M(D2 ) ∈ S] + δ

A randomized mechanism M satisfies (ε, δ)-differential privacy if for any two neighboring datasets D₁ and D₂ that differ in exactly one 
record, and for all possible outputs S, the above inequality holds. 

ε Privacy budget: Controls the privacy-utility trade-off. Smaller ε means stronger privacy but more noise.

δ Failure probability: The probability that the privacy guarantee fails. Typically set to very small values (e.g., 10⁻⁵).

Neighboring Datasets 

Two datasets are neighbors if they differ in exactly one individual's 
record. This captures the idea of adding or removing a single 
person's data, ensuring that no individual's presence or absence 
significantly affects the output. 

Privacy Guarantee 

The exponential bound ensures that an adversary cannot reliably 
determine whether any specific individual's data was included in the 
dataset, even with access to the output and auxiliary information 
about all other individuals. 

Key Insight: Differential privacy provides mathematical guarantees that are independent of an adversary's background 
knowledge, making it robust against re-identification attacks that defeat traditional anonymization. 
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Classical DP Mechanisms

Mechanism Description & Formula Sensitivity Best Use Cases

Laplace Adds noise from Laplace distribution scaled 
to sensitivity satisfies ε-DP 

𝑀𝑀(𝐷𝐷) = 𝑓𝑓(𝐷𝐷) + 𝐿𝐿𝐿𝐿𝐿𝐿(Δ𝑓𝑓/𝜀𝜀)

ℓ₁-sensitivity
Δ𝑓𝑓 = max ||𝑓𝑓(𝐷𝐷) − 𝑓𝑓(𝐷𝐷𝐷)||₁

Counting queries

Sum queries Histograms

Gaussian Uses Gaussian noise for approximate DP  
satisfies (ε,δ)-DP 

𝑀𝑀(𝐷𝐷) = 𝑓𝑓(𝐷𝐷) + 𝑁𝑁(0,𝜎𝜎𝜎𝜎𝜎)

ℓ₂-sensitivity
Δ𝑓𝑓 = max ||𝑓𝑓(𝐷𝐷) − 𝑓𝑓(𝐷𝐷𝐷)||₂

Machine learning

Gradient descent

High-dim data

Exponential Samples outputs based on utility 
function, favors high-utility outputs 

Pr[𝑀𝑀(𝐷𝐷) = 𝑟𝑟] ∝ exp(𝜀𝜀𝜀𝜀(𝐷𝐷, 𝑟𝑟)/2Δ𝑢𝑢)

Utility sensitivity
Δ𝑢𝑢 = max |𝑢𝑢(𝐷𝐷, 𝑟𝑟) − 𝑢𝑢(𝐷𝐷𝐷, 𝑟𝑟)|

Selection queries

Optimization Ranking

Unary Encoding Randomized response for categorical data 

𝑈𝑈𝑈𝑈: 𝑝𝑝 = 𝑞𝑞 = 𝑒𝑒𝑒/(𝑒𝑒𝑒+ 1) 𝑂𝑂𝑂𝑂𝑂𝑂: 𝑝𝑝 = 0.5, 𝑞𝑞 = 1/(𝑒𝑒𝑒 + 1)

Per-bit perturbation
One-hot encoding

Categorical data Surveys

Local DP



Laplace Mechanism Deep Dive

𝑴𝑴𝑳𝑳𝑳𝑳𝑳𝑳 𝑫𝑫 = 𝒇𝒇 𝑫𝑫 + (𝒀𝒀𝟏𝟏, … ,𝒀𝒀𝒌𝒌)
where 𝒀𝒀~𝐋𝐋𝐋𝐋𝐋𝐋(∆𝟏𝟏𝒇𝒇/𝜺𝜺)

Mathematical Formulation

The Laplace mechanism adds noise drawn from the Laplace distribution, scaled to the ℓ

1

-sensitivity of the query function f. 

This ensures ε-differential privacy by obscuring individual contributions while preserving aggregate accuracy. 

Sensitivity Calculation

Δ𝒇𝒇 = max ||𝒇𝒇(𝑫𝑫) − 𝒇𝒇(𝑫𝑫𝑫)||1
Sensitivity measures the maximum change in query output 

when a single record is added or removed. For counting 
queries, Δ 1f = 1. For sum queries over bounded values [a,b], 
Δ1f = b - a. 

Implementation Considerations

Choose ε based on privacy requirements (smaller = more 
private)

Calculate sensitivity for your specific query function

Scale noise proportionally to sensitivity/ε

Suitable for numerical queries with bounded sensitivity

Computational efficiency: O(k) for k-dimensional output

Practical Example 



Handling Categorical Data

Unary Encoding Principles

Categorical values are transformed into one-hot (unary) vectors 
where each category maps to a binary position. Privacy is achieved 
through randomized response on each bit independently. 

1 Map categorical value v ∈ {1,...,k} to unary vector ev ∈ {0,1}k

2 Perturb each bit independently with probabilities p and q

3 Send perturbed vector to aggregator for frequency 
estimation

UE vs OUE Comparison

Method p value q value Variance

UE eε/(eε+1) 1/(e ε+1) Higher

OUE 1/2 1/(2e ε+1) Lower

Histogram Encoding Approaches

For discretized numerical features with k bins, histogram encoding 
provides frequency estimates while preserving differential privacy 
through two complementary approaches. 

Local DP Each user encodes their value as unary vector, 
applies randomized response at the edge, and sends perturbed 
report to aggregator. 

Central DP Trusted aggregator collects true histogram c and 
adds calibrated noise directly to each bin before release. 

Key Advantage: Both approaches preserve linear post-
processing capabilities, allowing normalization to probability 
mass functions and bin merging operations on released 
histograms. 



PETINA Package Demonstration

Numerical Data 

PETINA provides straightforward mechanisms for applying 
differential privacy to numerical attributes. Each mechanism 
perturbs data according to chosen privacy budget (ε, δ). 

from PETINA import DP_Mechanisms as DP nums = [ 10.5 , 12.3 , 15.8 , 11.0 ] 
# Laplace Mechanism priv_data = DP. applyDPLaplace (nums, 
sensitivity= 1.0 , eps= 0.5 ) 

# Gaussian Mechanism priv_data = DP.applyDPGaussian (nums, sensitivity=
1.0 , eps= 1.0 , delta= 1e-5 ) 

# Exponential Mechanism priv_data = DP.applyDPExponential
( candidates, scores, eps= 1.0 ) 

Key Parameters

sensitivity: Maximum change in output (Δf)

eps (ε): Privacy budget (smaller = more private)

delta (δ): Failure probability for Gaussian

Categorical Data 

For categorical attributes, PETINA provides encoding mechanisms 
that transform categories into perturbed reports with differential 
privacy guarantees. 

from PETINA import Encoding_Pertubation as EP cats = [ "10" , "14" , "30" , 
"21" ] # Calculate probabilities for ε = 0.7 p = EP. get_p (0.7 ) q = EP. get_q (p, 
0.7 ) # Unary Encoding (randomized response) private_data = 
EP.unaryEncoding (cats, p=p, q=q) # Histogram Encoding hist_reports = 
EP.histogramEncoding (cats, p=p, q=q) 

Encoding Process

p: Pr[report 1 | true value is 1]

q: Pr[report 1 | true value is 0]

Output: Perturbed reports for aggregation

PETINA Advantages

Simple, intuitive API for numerical and categorical data Supports classical DP mechanisms (Laplace, Gaussian, 
Exponential)

Optimized implementations for edge computing environments Suitable for telemetry, sensor values, surveys, and classification 
tasks



The Correlation Challenge
Classical differential privacy assumes independent data 

records , but real-world datasets often exhibit strong 
correlations that weaken both privacy and utility guarantees. 
High-dimensional and structured datasets common in 
telemetry, health, and mobility applications present particular 
challenges. 

Impact of Correlations

Privacy Degradation

Correlated features leak 
information about individuals 
beyond theoretical bounds

Utility Loss

Standard mechanisms add 
excessive noise to preserve 
privacy in correlated data

Inference Attacks

Adversaries exploit feature 
dependencies to reconstruct 
sensitive information

Sensitivity Miscalculation

Traditional sensitivity measures 
fail to account for multivariate 
relationships

Real-World Example

In healthcare data, age, blood pressure, and cholesterol levels are 
highly correlated. Standard DP mechanisms treating them 
independently either add too much noise (losing utility) or fail to 
protect privacy when adversaries know the correlations. 



Feature Correlation vs Row Correlation
Why Feature Correlation Matters for DP

Differential privacy mechanisms add noise based on global
sensitivity, which measures how much a query result can change
when one individual's data is added or removed. This is
fundamentally about column (feature) relationships , not row
relationships.

When features are correlated (e.g., age and blood pressure),
knowing one feature value constrains another. Classical DP treats
each feature independently, adding noise as if uncorrelated, which
wastes privacy budget and reduces utility.

The Core Distinction
Feature (Column) Correlation: Statistical dependencies 
between different attributes (e.g., height correlates with 
weight). This affects how much information leaks when 
releasing multiple statistics. 
Row Correlation: Dependencies between different individuals' 
records (e.g., family members). While important, standard DP 
assumes row independence as part of its threat model. 

Impact on DP Mechanisms

Classical DP (Ignores Feature Correlation)
Adds independent noise to each feature → Overestimates sensitivity 
→ Excessive noise → Poor utility 

MIC-DP (Exploits Feature Correlation)
Measures mutual information between features → Adjusts 
sensitivity → Reduced noise → 30-40% better utility 

Key Insight: Correlation-aware differential privacy 
mechanisms adjust noise injection based on feature 
dependencies, using information-theoretic measures to 
maintain both strong privacy guarantees and analytical 
utility in structured datasets. 



Δ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐⁽ⁱ⁾ = Δ𝑓𝑓 · (1 + 𝛾𝛾 · |𝜌𝜌ᵢ|)

Correlation-Aware DP Approaches

Approach Method & Formula Characteristics

Linear Correlation 
Adjustments

O(nd)

Adjusts sensitivity using Pearson correlation 
coefficients between features and targets

where 𝜌𝜌ᵢ is the Pearson coefficient 

Fast computation Simple implementation

Linear only Misses complex dependencies

Multivariate Dependency 
Modeling

O(nd³)

Uses covariance structure and Mahalanobis 
distance to capture multivariate correlations

Δmulti⁽ⁱ⁾ = Δf · (1 + β · dw(Xᵢ, Y) / max dw(Xᵢ, Y))

Multivariate aware Covariance-based

Requires matrix inversion Assumes Gaussian

Information-Theoretic 
Measures

O(nd log d)

Uses mutual information to capture linear and 
nonlinear dependencies without distributional 
assumptions

I(X; Y) = Σ p(xᵢ, y) log(p(xᵢ, y) / p(xᵢ)p(y))

Nonlinear detection Distribution-free

Robust to outliers

Maximum Information 
Coefficient (MIC)

O(n² log n)

Detects arbitrary functional relationships through 
optimal grid partitions

MIC(Xᵢ, Y) = maxG I(Xᵢ, Y; G) / √(H(Xᵢ) · H(Y))

Sensitivity adjusted inversely to MIC scores 

Arbitrary relationships High-dimensional data

Structured data optimal



MIC-DP: Maximum Information Correlated DP
MIC-DP extends differential privacy to handle correlated features in structured and high-dimensional data by using information-theoretic 

measures to adaptively calibrate noise based on feature dependencies. 

Maximum Information Coefficient (MIC)

MIC detects arbitrary functional relationships between features by 
normalizing mutual information I across optimal grid partitions G, 
where H(·) denotes entropy. This captures both linear and nonlinear 
dependencies without distributional assumptions. 

Values range from 0 (no relationship) to 1 (perfect functional relationship) 

Key Advantages

Structured Data Optimization

Especially suited for tabular datasets with mixed 
numerical and categorical features exhibiting complex 
dependencies 

High-Dimensional Scalability

Efficiently handles datasets with hundreds of features 
through adaptive noise calibration based on correlation 
strength 

Privacy-Utility Balance

Maintains strong privacy guarantees while significantly 
improving utility compared to correlation-blind 
mechanisms 

MIC-DP Workflow

➊ Compute private MIC scores between features and target

➋ Adjust sensitivity for each feature based on MIC values

➌ Apply calibrated noise proportional to adjusted sensitivity

➍ Release privatized dataset with correlation-aware 
protection

MIC(Xᵢ,Y) = maxG I(Xᵢ,Y;G) / √ (H(Xᵢ)·H(Y))



MIC-DP Implementation
MIC-DP enables correlation-aware differential privacy for tabular data with mixed numerical and categorical features, automatically adjusting 

noise based on feature correlations. 

Tabular Data with Feature Correlations

from MIC_DP import CorrelationAwareDP as CAP import pandas as pd 

# Load dataset with correlated features
data = pd.read_csv( 'dataset.csv' )  features = data[[ 'age' , 'blood_p' , 'chol' , 'gender' ]] ] 

# Initialize MIC-DP with privacy budget

mic_dp = CAP.MICDifferentialPrivacy ( eps= 1.0, eps_mic= 0.1, alpha= 5.0 ) 

# Apply correlation-aware privatization

private_data = mic_dp.privatize_dataset(features, target) 

# Retrieve correlation-adjusted sensitivities
sensitivities = mic_dp. get_feature_sensitivities () mic_scores = mic_dp. get_private_mic_scores () 

Key Outputs

Private Dataset

Correlation-aware noise added
to each feature based on MIC
scores relative to target 

Feature Sensitivities

Adjusted ΔMIC
(i) for each feature

Lower for highly correlated
features (less noise needed) 

MIC Scores

Private correlation estimates
Range: [0, 1]
Higher = stronger relationship 

Utility Advantage 

MIC-DP reduces noise by up to 40% for highly correlated 
features compared to classical DP, significantly improving 
analytical utility while maintaining privacy guarantees. 

target = data['risk_score’]



MIC-DP Experimental Results: MIMIC Healthcare Dataset
Privacy-Utility Trade-off Comparison

Dataset & Methodology
MIMIC-III Clinical Database: Real-world healthcare 
data with highly correlated medical features (vital signs, 
lab results, diagnoses). Evaluated on two metrics across 
varying privacy budgets (ε = 0.1 to 1.0). 
Compared Methods: MIC-DP, Pearson correlation-
based DP, Mahalanobis distance-based DP, and Baseline 
(classical Laplace mechanism). 

Key Findings
1 Lower Error: MIC-DP achieves 30-40% improvement 

in Mean Absolute Error at strong privacy levels (ε ≤
0.5) 

2 Better Prediction: Target Prediction MAE shows 
MIC-DP maintains stable performance even at low ε 

3 Correlation Awareness: MIC-DP's information-
theoretic approach captures non-linear 
dependencies better than linear methods 

4 Convergence: As ε → 1.0, all methods converge, 
showing correlation-awareness primarily benefits 
strong privacy regimes 

Practical Implications
Healthcare: Enables stronger privacy (lower ε) 
without sacrificing clinical utility for patient 
monitoring and research 
Edge Deployment: Reduced noise allows local DP 
with acceptable accuracy despite resource 
constraints 
Compliance: Better utility at low ε helps meet strict 
privacy regulations (HIPAA, GDPR) while maintaining 
data value 



LLM-Assisted DP Configuration
Large language models can interpret natural language privacy preferences and automatically configure differential privacy parameters, 

making privacy engineering accessible to non-experts while optimizing the privacy-utility trade-off. 

Automated Configuration Workflow
1 User Preference Elicitation

LLM engages user to understand privacy requirements, data sensitivity, and 
utility constraints

2 Context Analysis & Parameter Recommendation

Model analyzes data characteristics and suggests privacy budget (ε, δ), 
mechanism selection, and hyperparameters with trade-off explanation

3 Code Generation
Generate implementation code with configured parameters ready for 
deployment

Interaction Example
User:
"I need to protect patient health records for a research study. The data 
includes age, blood pressure, and diagnosis codes. Privacy is critical, but I 
need accurate statistical summaries."

LLM Assistant:
"For healthcare data with strong privacy requirements, I recommend 
ε=0.5 with δ=1e-6. Since your features are correlated, MIC-DP will 
preserve 30-40% more utility than classical mechanisms."

Generated Configuration:
mechanism: MIC-DP
epsilon: 0.5, delta: 1e-6
alpha: 5.0 # Correlation amplification
sensitivity_mode: "adaptive"
expected_utility_retention: 0.85 Key Benefits

Accessibility
Enables non-experts to deploy DP without deep mathematical 
knowledge of privacy mechanisms
Optimization
LLMs explore parameter space efficiently, balancing privacy and 
utility better than manual tuning
Explainability
Natural language explanations help users understand privacy 
guarantees and trade-offs



Differential Privacy for Large Language Models
DP-SGD for LLM Training

Differentially Private Stochastic Gradient Descent

DP-SGD modifies standard gradient descent by clipping per-
sample gradients and adding calibrated Gaussian noise before 
parameter updates, preventing the model from memorizing 
individual training examples. 

gₜ = (1/B) Σ clip(∇θ ℓ(xᵢ), C) + N(0,σ²C²I)

Key Challenges
Computational Overhead: Per-sample gradient computation 
loses GPU parallelization, increasing training time by 2-5×
Memory Requirements: Storing individual gradients for large 
models (>7B parameters) requires significant GPU memory
Utility Degradation: Strong privacy (ε < 1) can reduce model 
performance by 5-15% on downstream tasks

Privacy-Preserving Inference

Inference Protection Strategies

Protecting user prompts and model outputs during inference 
requires different techniques than training-time privacy, including 
secure enclaves and output perturbation. 

Trusted Execution Environments: Process sensitive prompts 
in hardware-isolated enclaves (Intel SGX, ARM TrustZone)
Output Sanitization: Apply DP mechanisms to generated text 
to prevent leakage of training data patterns
Federated Inference: Split model across edge and cloud to 
keep sensitive data local

LLM Privacy Applications

Healthcare Chatbots

Fine-tune medical LLMs on 
patient data with DP guarantees

Enterprise AI
Train on proprietary documents 
without memorizing sensitive 
content

Personalization
User-level DP for personalized 
assistants on edge devices

Synthetic Data
Generate DP-protected synthetic 
text for data sharing



Edge Deployment Considerations
Resource Constraint Challenges

Latency Budgets
Real-time applications require sub-
millisecond response times, limiting 
computational overhead for privacy 
mechanisms 

Energy Constraints
Battery-powered IoT devices must 
minimize energy consumption for 
cryptographic operations and noise 
generation 

Memory Limitations
Embedded systems have limited 
RAM for storing correlation matrices 
and intermediate computations 

Bandwidth Restrictions
Wireless networks impose limits on 
data transmission, requiring 
efficient encoding schemes 

Optimization Strategies

Strategy Implementation

Local DP Perturb data at edge devices before transmission, 
eliminating need for trusted aggregator

Lightweight 
Encoding

Use OUE for categorical data to reduce variance 
and communication overhead

Hardware 
Acceleration

Leverage secure enclaves and crypto accelerators 
for efficient noise generation

Best Practice 

Deploy MIC-DP for structured data with correlation-aware 
sensitivity adjustment, use local DP for untrusted 
environments, and leverage hardware accelerators when 
available to balance privacy, utility, and performance in 
resource-constrained edge deployments. 



Real-World Applications

Autonomous Vehicles

Connected vehicles continuously collect 
location, speed, and sensor data. 
Differential privacy enables fleet-wide 
analytics while protecting individual 
driver trajectories from re-identification 
attacks. 

Data Types: GPS trajectories, 
telemetry, traffic patterns
Mechanism: Local DP with histogram 
encoding for location bins
Challenge: Real-time processing with 
latency constraints

IoT Sensor Networks

Smart city deployments aggregate data 
from thousands of sensors monitoring 
environmental conditions, occupancy, 
and infrastructure health while 
preserving privacy of individual 
readings. 

Data Types: Temperature, humidity, 
occupancy counts, energy usage
Mechanism: Laplace mechanism for 
numerical aggregates
Challenge: Energy-constrained 
devices with limited computational 
power

Healthcare Monitoring

Wearable health monitors and medical 
IoT devices collect sensitive physiological 
data. MIC-DP handles correlated 
features like heart rate, blood pressure, 
and activity levels for population health 
studies. 

Data Types: Vital signs, activity 
patterns, medication adherence
Mechanism: MIC-DP for correlated 
physiological measurements
Challenge: High-dimensional 
correlated data with strict privacy 
requirements

Deployment Pipeline for Edge Systems

1. Data Collection

Edge devices collect raw sensor data and 
telemetry in real-time

→
2. Local Privatization

Apply DP mechanisms at edge before 
transmission to reduce trust requirements

→
3. Aggregation & Analysis

Central server aggregates privatized data 
for analytics while maintaining privacy 

guarantees



Key Takeaways & Best Practices
Core Concepts
1 Differential Privacy provides mathematically rigorous 

privacy guarantees by adding calibrated noise to data or 
query results, protecting individual records from re-
identification. 

2 Classical mechanisms (Laplace, Gaussian, Exponential) 
work well for independent data but add excessive noise 
when features are correlated. 

3 MIC-DP leverages information-theoretic correlation 
measures to adaptively reduce noise for highly correlated 
features, improving utility by up to 40% while maintaining 
privacy guarantees. 

4 Edge deployment requires balancing privacy, utility, and 
performance under resource constraints through local 
DP, lightweight encoding, and hardware acceleration. 

Implementation Best Practices
Choose mechanisms based on data characteristics:
Use classical DP for independent features, MIC-DP for structured 
tabular data with correlations 
Set privacy budgets carefully: Start with ε ∈ [0.5, 1.0] for 
strong privacy, adjust based on utility requirements and 
threat model 
Deploy local DP at edge devices: Perturb data before 
transmission to minimize trust assumptions and reduce 
attack surface 
Leverage hardware acceleration: Use secure enclaves and 
cryptographic accelerators to reduce computational overhead 
Monitor privacy budget consumption: Track cumulative ε 
across queries to prevent privacy budget exhaustion 

Tools & Resources
PETINA Package
Python library for classical DP mechanisms with numerical and categorical 
data support
MIC-DP Framework
Correlation-aware differential privacy for structured high-dimensional 
datasets
Tutorial Paper
Comprehensive guide with implementation examples and deployment 
strategies

Differential privacy is essential for protecting sensitive data 
in edge computing environments. By understanding classical 
mechanisms, correlation-aware approaches, and deployment 

considerations, engineers can build privacy-preserving 
systems that balance strong guarantees with practical utility 

and performance requirements. 
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