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Tutorial Overview

Learning Objectives

Understand differential privacy concepts and mathematical
guarantees

Survey practical algorithms across classical and modern
approaches

Explore correlation-aware privacy mechanisms for structured
data

Gain hands-on experience with PETINA and MIC-DP tools

Learn to integrate DP into edge computing architectures



Motivation: Privacy Challenges at the Edge

The Problem

Modern distributed and edge systems continuously generate vast
volumes of sensitive data across autonomous vehicles, IoT devices, mobile
health monitors, and industrial controllers. Traditional anonymization
methods prove insufficient against modern re-identification and
correlation attacks.

System-Level Constraints
Edge and embedded environments impose strict latency and energy
budgets, complicating the direct adoption of differential privacy

mechanisms originally designed for centralized cloud platforms. Resource
constraints limit applicability of traditional privacy-preserving methods.

@ Solution: Differential Privacy provides a rigorous
mathematical framework enabling useful data analysis while
bounding risk to individual information.
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What is Differential Privacy?

t[M(D,) € S]< &* -P[M(D,) € S] +6

A randomized mechanism M satisfies (g, 8)-differential privacy if for any two neighboring datasets D, and D, that differ in exactly one
record, and for all possible outputs S, the above inequality holds.

e Privacy budget: Controls the privacy-utility trade-off. Smaller e means stronger privacy but more noise.

5 Failure probability: The probability that the privacy guarantee fails. Typically set to very small values (e.g., 107).

e Neighboring Datasets o Privacy Guarantee

Two datasets are neighbors if they differ in exactly one individual's The exponential bound ensures that an adversary cannot reliably
record. This captures the idea of adding or removing a single determine whether any specific individual's data was included in the
person's data, ensuring that no individual's presence or absence dataset, even with access to the output and auxiliary information
significantly affects the output. about all other individuals.

@ KeyInsight: Differential privacy provides mathematical guarantees that are independent of an adversary's background
knowledge, making it robust against re-identification attacks that defeat traditional anonymization.



Classical DP Mechanisms

Mechanism

Description & Formula

Sensitivity

Best Use Cases

Laplace

Gaussian

Exponential

Unary Encoding

Adds noise from Laplace distribution scaled
to sensitivity satisfies e-DP

M(D) = f(D) + Lap(Af/e)

Uses Gaussian noise for approximate DP
satisfies (g,6)-DP

M(D) = f(D) + N(0,0%I)

Samples outputs based on utility
function, favors high-utility outputs

Pr[M(D) =r] « exp(eu(D,r)/2Au)

Randomized response for categorical data

UE:p=q=c¢€°/(e*+1) QUE:p=05,q=1/(e+1)

2,-sensitivity
Af = max||f(D) — f(D)lx

2,-sensitivity
Af = max||f(D) = f(D)]l

Utility sensitivity
Au = max |u(D,r) — u(D',7)|

Per-bit perturbation

One-hot encoding

Counting queries

Machine learning
Gradient descent

High-dim data

Selection queries

Optimization

Categorical data

Local DP



Laplace Mechanism Deep Dive

Mathematical Formulation

MLap(D) =f(D)+ (Yq,...,Y)
where Y~Lap(A,f/¢)

The Laplace mechanism adds noise drawn from the Laplace distribution, scaled to the £ -sensitivity of the query function f.

This ensures e-differential privacy by obscuring individual contributions while preserving aggregate accuracy.

Sensitivity Calculation

Af = max||f(D) — f(D")]l4

Sensitivity measures the maximum change in query output
when a single record is added or removed. For counting
queries, A 1f = 1. For sum queries over bounded values [a,b],
Af=b-a.

Implementation Considerations

Choose € based on privacy requirements (smaller = more
private)

Calculate sensitivity for your specific query function
Scale noise proportionally to sensitivity/e
Suitable for numerical queries with bounded sensitivity

Computational efficiency: O(k) for k-dimensional output




Handling Categorical Data

Unary Encoding Principles

Categorical values are transformed into one-hot (unary) vectors
where each category maps to a binary position. Privacy is achieved
through randomized response on each bit independently.

o Map categorical value v € {1,...,k} to unary vector e, € {0,1}

o Perturb each bit independently with probabilities p and q

9 Send perturbed vector to aggregator for frequency
estimation

UE vs OUE Comparison

Method p value g value Variance
UE et/(et+1) 1/(e€+1) Higher
OUE 1/2 1/(2e &+1) Lower

Histogram Encoding Approaches

For discretized numerical features with k bins, histogram encoding
provides frequency estimates while preserving differential privacy
through two complementary approaches.

Each user encodes their value as unary vector,
applies randomized response at the edge, and sends perturbed
report to aggregator.

el Trusted aggregator collects true histogram c and

adds calibrated noise directly to each bin before release.

Key Advantage: Both approaches preserve linear post-
processing capabilities, allowing normalization to probability
mass functions and bin merging operations on released
histograms.



PETINA Package Demonstration

Numerical Data © categorical Data

PETINA provides straightforward mechanisms for applying
differential privacy to numerical attributes. Each mechanism
perturbs data according to chosen privacy budget (g, 6).

For categorical attributes, PETINA provides encoding mechanisms

that transform categories into perturbed reports with differential
privacy guarantees.

PETINA DP_Mechanisms DP nums=[ 10.5, 12.3, 15.8, 11.0]
# Laplace Mechanism priv_data = DP. (nums,
sensitivity= 1.0, eps=0.5)

PETINA Encoding_Pertubation EP cats=[ "10", "14", "30",
"21"] # Calculate probabilities fore=0.7 p=EP. (0.7) g = EP.

(P

# Gaussian Mechanism priv_data = DP. (nums, sensitivity= 0.7) # Unary Encoding (randomized response) private_data =

1.0, eps=1.0, delta= 1e-5) EP. (cats, p=p, q=q) # Histogram Encoding hist_reports =
: EP. cats, p=p, 9=

# Exponential Mechanism priv_data =DP. ( P=p. 9=q)

scores, eps= 1.0) ( candidates,

Key Parameters Encoding Process

sensitivity: Maximum change in output (Af) p: Prireport 1 | true value is 1]

eps (g): Privacy budget (smaller = more private) q: Prlreport 1 | true value is 0]

delta (8): Failure probability for Gaussian Output: Perturbed reports for aggregation

W PETINA Advantages

Simple, intuitive API for numerical and categorical data E;Sgr?gfticalf)ss'cal DP mechanisms (Laplace, Gaussian,

- . . . . Suitable for telemetry, sensor values, surveys, and classification
Optimized implementations for edge computing environments tasks




The Correlation Challenge

Classical differential privacy assumes independent data
records, but real-world datasets often exhibit strong
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protect privacy when adversaries know the correlations.



Feature Correlation vs Row Correlation

Why Feature Correlation Matters for DP

Differential privacy mechanisms add noise based on global
sensitivity, which measures how much a query result can change
when one individual's data is added or removed. This is
fundamentally about column (feature) relationships , not row
relationships.

When features are correlated (e.g., age and blood pressure),
knowing one feature value constrains another. Classical DP treats
each feature independently, adding noise as if uncorrelated, which
wastes privacy budget and reduces utility.

Impact on DP Mechanisms

Adds independent noise to each feature — Overestimates sensitivity
— Excessive noise — Poor utility

Measures mutual information between features — Adjusts
sensitivity — Reduced noise — 30-40% better utility

The Core Distinction

Feature (Column) Correlation: Statistical dependencies
between different attributes (e.g., height correlates with
weight). This affects how much information leaks when
releasing multiple statistics.

Row Correlation: Dependencies between different individuals'
records (e.g., family members). While important, standard DP
assumes row independence as part of its threat model.

Key Insight: Correlation-aware differential privacy

mechanisms adjust noise injection based on feature
dependencies, using information-theoretic measures to
maintain both strong privacy guarantees and analytical
utility in structured datasets.




Correlation-Aware DP Approaches

Approach Method & Formula Characteristics

Linear Correlation Adjusts sensitivity using Pearson correlation Fast computation Simple implementation

Adjustments coefficients between features and targets Linearonly  Misses complex dependencies
o(nd) Acorp® = Af - (1 + v+ |pil)

where p; is the Pearson coefficient

Multivariate Dependency Uses covariance structure and Mahalanobis Multivariate aware ~ Covariance-based
Modeling distance to capture multivariate correlations Requires matrix inversion Assumes Gaussian
o(nd?) Amulti = Af - (1 + B-dw(X;Y) / max dw(X; Y))
Information-Theoretic Uses mutual information to capture linear and Nonlinear detection  Distribution-free
Measures nonlinear dependencies without distributional Robust to outliers
assumptions
O(nd log d)

I[(XY) = Zpiy) log(pxiy) / px)p(y))

Maximum Information Detects arbitrary functional relationships through Arbitrary relationships High-dimensional data
Coefficient (MIC) optimal grid partitions Structured data optimal
o(n?log n) MIC(X;,Y) = maxG I(X;,Y;G) / V(H(X) - H(Y))

Sensitivity adjusted inversely to MIC scores



MIC-DP: Maximum Information Correlated DP

MIC-DP extends differential privacy to handle correlated features in structured and high-dimensional data by using information-theoretic

measures to adaptively calibrate noise based on feature dependencies.

Maximum Information Coefficient (MIC)
MIC(X;,Y) = maxG I(X;,Y;G) / v (HCX)-H(Y))

MIC detects arbitrary functional relationships between features by
normalizing mutual information I across optimal grid partitions G,
where H(-) denotes entropy. This captures both linear and nonlinear
dependencies without distributional assumptions.

Values range from 0 (no relationship) to 1 (perfect functional relationship)

MIC-DP Workflow

©® Compute private MIC scores between features and target
® Adjust sensitivity for each feature based on MIC values

® Apply calibrated noise proportional to adjusted sensitivity

Release privatized dataset with correlation-aware

. protection

Key Advantages

o

Structured Data Optimization

Especially suited for tabular datasets with mixed
numerical and categorical features exhibiting complex
dependencies

High-Dimensional Scalability

Efficiently handles datasets with hundreds of features
through adaptive noise calibration based on correlation
strength

Privacy-Utility Balance

Maintains strong privacy guarantees while significantly
improving utility compared to correlation-blind
mechanisms



MIC-DP Implementation

MIC-DP enables correlation-aware differential privacy for tabular data with mixed numerical and categorical features, automatically adjusting
noise based on feature correlations.

Key Outputs
Tabular Data with Feature Correlations

Correlation-aware noise added
to each feature based on MIC
scores relative to target

MIC_DP CorrelationAwareDP CAP pandas

pd
# Load dataset with correlated features

data = pd.read_csv( 'dataset.csv' ) features = data[[ 'age', 'blood_p', 'chol','gender" ]]
target = data['risk_score’]

# Initialize MIC-DP with privacy budget

Adjusted A ;@) for each feature

mic_dp = CAP. (eps=1.0, eps_mic= 0.1, alpha= 5.0)

Lower for highly correlated
# Apply correlation-aware privatization

features (less noise needed)
private_data = mic_dp. (features, target)

# Retrieve correlation-adjusted sensitivities . : -
N e Private correlation estimates
sensitivities = mic_dp.
el Range: [0, 1]

Higher = stronger relationship

() mic_scores = mic_dp.

@ Utility Advantage

MIC-DP reduces noise by up to 40% for highly correlated
features compared to classical DP, significantly improving
analytical utility while maintaining privacy guarantees.



MIC-DP Experimental Results: MIMIC Healthcare Dataset
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Dataset & Methodology

MIMIC-III Clinical Database: Real-world healthcare
data with highly correlated medical features (vital signs,
lab results, diagnoses). Evaluated on two metrics across
varying privacy budgets (€ = 0.1 to 1.0).

Compared Methods: MIC-DP, Pearson correlation-
based DP, Mahalanobis distance-based DP, and Baseline
(classical Laplace mechanism).

Key Findings

Lower Error: MIC-DP achieves 30-40% improvement
in Mean Absolute Error at strong privacy levels (€ <
0.5)

Better Prediction: Target Prediction MAE shows
MIC-DP maintains stable performance even at low €
Correlation Awareness: MIC-DP's information-
theoretic approach captures non-linear
dependencies better than linear methods
Convergence: As e — 1.0, all methods converge,
showing correlation-awareness primarily benefits
strong privacy regimes

Practical Implications

@ Healthcare: Enables stronger privacy (lower g)
without sacrificing clinical utility for patient
monitoring and research

@© Edge Deployment: Reduced noise allows local DP
with acceptable accuracy despite resource
constraints

© Compliance: Better utility at low € helps meet strict
privacy regulations (HIPAA, GDPR) while maintaining
data value



LLM-Assisted DP Configuration

Large language models can interpret natural language privacy preferences and automatically configure differential privacy parameters,
making privacy engineering accessible to non-experts while optimizing the privacy-utility trade-off.

1

Automated Configuration Workflow

User Preference Elicitation

LLM engages user to understand privacy requirements, data sensitivity, and

utility constraints

Context Analysis & Parameter Recommendation

Model analyzes data characteristics and suggests privacy budget (g, §),
mechanism selection, and hyperparameters with trade-off explanation

Code Generation

Generate implementation code with configured parameters ready for
deployment

Key Benefits

@Accessibility

Enables non-experts to deploy DP without deep mathematical
knowledge of privacy mechanisms

eOptimization

LLMs explore parameter space efficiently, balancing privacy and
utility better than manual tuning

@Explainability

Natural language explanations help users understand privacy
guarantees and trade-offs

Interaction Example

User:

"I need to protect patient health records for a research study. The data
includes age, blood pressure, and diagnosis codes. Privacy is critical, but I
need accurate statistical summaries."

LLM Assistant:

"For healthcare data with strong privacy requirements, I recommend
£=0.5 with 6=1e-6. Since your features are correlated, MIC-DP will
preserve 30-40% more utility than classical mechanisms."

mechanism: MIC-DP
epsilon: 0.5, delta: 1e-6

alpha: 5.0 # Correlation amplification
sensitivity_mode: "adaptive"
expected_utility_retention: 0.85




Differential Privacy for Large Language Models

DP-SGD for LLM Training

Differentially Private Stochastic Gradient Descent

DP-SGD modifies standard gradient descent by clipping per-
sample gradients and adding calibrated Gaussian noise before
parameter updates, preventing the model from memorizing
individual training examples.

g. = (1/B) X clip(V6 ¢(x;),C) + N(0,c2C?])

Key Challenges

A Computational Overhead: Per-sample gradient computation
loses GPU parallelization, increasing training time by 2-5x

A Memory Requirements: Storing individual gradients for large
models (>7B parameters) requires significant GPU memory

A Utility Degradation: Strong privacy (€ < 1) can reduce model
performance by 5-15% on downstream tasks

Privacy-Preserving Inference

Inference Protection Strategies

Protecting user prompts and model outputs during inference
requires different techniques than training-time privacy, including
secure enclaves and output perturbation.

@ Trusted Execution Environments:  Process sensitive prompts
in hardware-isolated enclaves (Intel SGX, ARM TrustZone)

@ Output Sanitization: Apply DP mechanisms to generated text
to prevent leakage of training data patterns

¥ Federated Inference: Split model across edge and cloud to
keep sensitive data local

LLM Privacy Applications

Healthcare Chatbots Enterprise Al

Train on proprietary documents

Fine-tune medical LLMs on . . .
without memorizing sensitive

patient data with DP guarantees

content
Personalization Synthetic Data
User-level DP for personalized Generate DP-protected synthetic

assistants on edge devices text for data sharing




Edge Deployment Considerations

Resource Constraint Challenges

Latency Budgets Energy Constraints

Real-time applications require sub- Battery-powered IoT devices must
millisecond response times, limiting minimize energy consumption for
computational overhead for privacy cryptographic operations and noise
mechanisms generation

Memory Limitations Bandwidth Restrictions

Wireless networks impose limits on
data transmission, requiring
efficient encoding schemes

Embedded systems have limited
RAM for storing correlation matrices
and intermediate computations

Optimization Strategies

Strategy Implementation

Local DP Perturb data at edge devices before transmission,
eliminating need for trusted aggregator

@© Best Practice

Deploy MIC-DP for structured data with correlation-aware
sensitivity adjustment, use local DP for untrusted
environments, and leverage hardware accelerators when

Lightweight Use OUE for categorical data to reduce variance available to balance privacy, utility, and performance in
Encoding and communication overhead resource-constrained edge deployments.
Hardware Leverage secure enclaves and crypto accelerators

Acceleration for efficient noise generation



Real-World Applications

Autonomous Vehicles IoT Sensor Networks Healthcare Monitoring

Connected vehicles continuously collect Smart city deployments aggregate data Wearable health monitors and medical
location, speed, and sensor data. from thousands of sensors monitoring IoT devices collect sensitive physiological
Differential privacy enables fleet-wide environmental conditions, occupancy, data. MIC-DP handles correlated
analytics while protecting individual and infrastructure health while features like heart rate, blood pressure,
driver trajectories from re-identification preserving privacy of individual and activity levels for population health
attacks. readings. studies.
@ Data Types: Temperature, humidity, @ Data Types: Vital signs, activity
© Data Types: GPS trajectories, occupancy counts, energy usage patterns, medication adherence
telemetyatratficipaticrns @ Mechanism: Laplace mechanism for ©@ Mechanism: MIC-DP for correlated
© Mechanism: Local DP with histogram numerical aggregates physiological measurements
ainsziling ot oo bl @ Challenge: Energy-constrained @ Challenge: High-dimensional
© Challenge: Real-time processing with devices with limited computational correlated data with strict privacy
latency constraints power requirements

Deployment Pipeline for Edge Systems

1. Data Collection 2. Local Privatization 3. Aggregation & Analysis

— Central server aggregates privatized data
for analytics while maintaining privacy
guarantees

Edge devices collect raw sensor dataand ~ —~ Apply DP mechanisms at edge before
telemetry in real-time transmission to reduce trust requirements



Key Takeaways & Best Practices
Core Concepts

Implementation Best Practices
Choose mechanisms based on data characteristics:

o Differential Privacy provides mathematically rigorous

privacy guarantees by adding calibrated noise to data or Use classical DP for independent features, MIC-DP for structured
query results, protecting individual records from re- tabular data with correlations
identification. Set privacy budgets carefully: Start with € € [0.5, 1.0] for
strong privacy, adjust based on utility requirements and
o Classical mechanisms (Laplace, Gaussian, Exponential) threat model
work well for independent data but add excessive noise Deploy local DP at edge devices: Perturb data before
when features are correlated. transmission to minimize trust assumptions and reduce
attack surface
e MIC-DP leverages information-theoretic correlation Leverage hardware acceleration: Use secure enclaves and
measures to adaptively reduce noise for highly correlated cryptographic accelerators to reduce computational overhead
features, improving utility by up to 40% while maintaining Monitor privacy budget consumption: Track cumulative €
privacy guarantees. across queries to prevent privacy budget exhaustion

o Edge deployment requires balancing privacy, utility, and Tools & Resources
performance under resource constraints through local PETINA Package

DP, lightweight encoding, and hardware acceleration. . . : ) : :
9 9 9 Python library for classical DP mechanisms with numerical and categorical

data support

Differential privacy is essential for protecting sensitive data MIC-DP Framework
in edge computing environments. By understanding classical
mechanisms, correlation-aware approaches, and deployment datasets

considerations, engineers can build privacy-preserving .
systems that balance strong guarantees with practical utility Tutorial Paper
and performance requirements. Comprehensive guide with implementation examples and deployment
strategies

Correlation-aware differential privacy for structured high-dimensional
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