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Mixture-of-Experts (MoE) Architecture
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Tensor Parallelism
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Expert Parallelism: A New Parallelization Technique Has 

Emerged with MoEs 
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Trends in MoE Architectures
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Attention Layer

Ashish Vaswani, et. al., Attention Is All You Need, https://arxiv.org/abs/1706.03762, 2017.
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Multi-Head Attention Parallelization: Tensor Parallelism
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Multi-Head Attention Parallelization: Data Parallelism
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Trends in Attention Layers
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DeepSeek-AI, DeepSeek-V3 Technical Report, https://arxiv.org/abs/2412.19437, 2024.
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LLM Performance Metrics (Latency)
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Hands-on Tutorial

[SGLang, vLLM]

SGLang: https://docs.sglang.ai/

vLLM: https://github.com/vllm-project/vllm

https://docs.sglang.ai/
https://github.com/vllm-project/vllm
https://github.com/vllm-project/vllm
https://github.com/vllm-project/vllm
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Example Workloads

BatchSize_ISL_OSL Example Workload

256_256_256 Conversation/translation/paraphrase questions

4096_256_256 Higher batch size

Conversation/translation/paraphrase questions

256_256_4096 Heavy reasoning tasks

256_4096_256 Summarization tasks



20 |

Trends in MoE Architectures
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TP vs. DP Attention [DeepSeek-V3]
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TP vs. DP Attention [DeepSeek-V3]
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Tensor Parallelism (TP) vs. Data Parallelism (DP) Attention 

[DeepSeek-V3]
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TP vs. DP Attention [DeepSeek-V3]
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TP vs. DP Attention [DeepSeek-V3]
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Trends in MoE Architectures
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Tensor Parallelism (TP) vs. Expert Parallelism (EP) [Mixtral 8x7B]
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MoE Variable-length Computations & Communications
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Deepseek-V3 Token-to-Expert Distribution
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Impact on Performance

33% Performance Degradation Due To Workload Imbalance Across GPUs
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MoE Compute Kernels
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MoE Compute Kernels
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MoE Compute Kernels
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MoE Compute Kernels
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Padding & Preparing Blocks for GEMM Computation

X

X

X

X

=

=

=

=

C

A

BA

Expert activations Expert outputs

• First step: Sorting

• Second step: Padding & preparing blocks with meta data

Hidden states

Expert weights



41 |

Every Block Has Its Own Expert Index
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Source: https://docs.vllm.ai/en/latest/design/moe_kernel_features.html#modular-kernel-families

• First step: Sorting

• Second step: Padding & preparing blocks with meta data

• Third step: Compute
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Hands-on Tutorial

[SGLang, vLLM]

SGLang: https://docs.sglang.ai/

vLLM: https://github.com/vllm-project/vllm

https://docs.sglang.ai/
https://github.com/vllm-project/vllm
https://github.com/vllm-project/vllm
https://github.com/vllm-project/vllm
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AMD AITER Kernels

https://github.com/ROCm/aiter
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Summary

• Presented the trends in attention layer implementations and MoE layer implementations

• Introduced LLM performance metrics

• Discussed the effect of parallelization techniques on performance metrics of DeepSeek-v3 and Mixtral 8x7B model

• Discussed the computational and communication challenges while running MoE inference

• Discussed the impact of AMD AITER kernel library end-to-end performance of LLMs
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Tensor Parallelism (TP) vs. Expert Parallelism (EP) [Deepseek-V3]
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MoE Scaling Laws

Best pre-training losses: larger 

models with increased sparsity

Best pre-training losses: fewer (not fewest!) 

active parameters and increased sparsity

Samira Abnar, et. al., Parameters vs. FLOPs: Scaling Laws for Optimal Sparsity for Mixture-of-Experts Language Models, https://arxiv.org/abs/2501.12370, 2025. 
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Attention Parallelization Techniques

GPU 0

GPU 1

Tensor Parallelism

Keys

Values

Keys

Values

Queries

Keys

Values

Multi-Head Attention (MHA)

Prompt:  The quick brown fox jumps over 

number of heads = 4



52 |

GPU 0

GPU 1

Data Parallel Attention

minibatch #0

Keys

Values

Keys

Values

minibatch #1

Data Parallel Attention & Multi-Head Attention

GPU 0

GPU 1

Data Parallel Multi-Head Attention

Keys

Values

Keys

Values

minibatch #0

minibatch #1



53 |

LLM Performance Metrics (Latency)
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Multi-Head Attention Parallelization: Tensor Parallelism
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TP vs. DP Attention [Mixtral 8x7B]

DP outperforms TP for conversation questions with large batch sizes
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TP vs. DP Attention [Mixtral 8x7B]

4096_256_256 case: TP vs DP attention

TP attention DP attention

Both kernel latencies & scheduling approach are in play here
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