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Mixture-of-Experts (MoE) Architecture

—

Traditional Transformers

Mixture-of-Experts (MoE)
Transformers
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Tensor Parallelism
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Expert Parallelism: A New Parallelization Technique Has

Emerged with MoEs
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Trends in MoE Architectures

Number of Experts vs Parameters per Expert Over Time
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Attention Layer

Multi-Head Attention (MHA)

Valuesl l l l

Queries number of heads = 4

Router

Prompt: The quick brown fox jumps over

Mixture-of-Experts (MoE)
Transformers

AMDZ\
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Multi-Head Attention Parallelization:

Multi-Head Attention (MHA)

Valuesl l l l

Queries number of
heads =4

Prompt: The quick brown fox jumps over

Tensor Parallelism

Tensor Parallelism

GPUO

Values l l
Keys l l
Queries l l

batch #0

GPU1
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Keys l l
Queries l l

batch #0
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Multi-Head Attention Parallelization: Data Parallelism

Multi-Head Attention (MHA)

Valuesl l l l

Queries number of
heads =4

Prompt: The quick brown fox jumps over

Data Parallelism

GPUO

Batch #0 minibatch #0

Values

Keys
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Batch #0 minibatch #1
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Trends in Attention Layers

Router

Mixture-of-Experts (MoE)
Transformers

Group-Query Attention (GQA)

Values l l
Keys Example:
Mixtral 8x7B

Multi-Head Attention (MHA)

Queries
Valuesl l l l
o J§ B

number of

Queries heads = 4

Multi-Head Latent Attention (MLA)

Prompt: The quick brown fox jumps over
Keys

[ : Corlnpres'sed : ]

Latent KV Example:
' Deepseek-V3
Queries l l l l
Albert Q. Jiang, et. al., Mixtral of Experts, https://arxiv.org/abs/2401.04088, 2024. AMDA
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Large Language Model (LLM) Inference

Decode

Prefill

jumps — over — the —> lazy
The quick brown fox

prompt output

KV Vectors
D Computation (Cache fill) during prefill stages
Memory access (Cache read) during decode stages

KV Vectors
Memory access (KV cache filled during prefill (orange blocks))
Computation (Cache fill) during decode stages
Memory access (KV cache filled during decode stages (previous blue blocks))

dog

Speculative
Decoding
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LLM Performance Metrics (Throughput)

Decode

Prefill

Q jumps = over —> the > lazy > dog

The quick brown fox

prompt output
\ J \ J \ ) \ ) \ J
| [ | | |
Input Throughput Output Throughput
(Tokens/sec) (Tokens/sec)
\ J
|
Total Throughput
(Tokens/sec)
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Increased Throughput Leads To Reduced Costs

Decode

Prefill

Q jumps = over —> the > lazy > dog

The quick brown fox

prompt output
\ J \ J \ ) \ ) \ J
| [ | | |
Input Throughput Output Throughput
(Tokens/sec) (Tokens/sec)
\ J
|
Total Throughput
(Tokens/sec)
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LLM Performance Metrics (Latency)

Decode

Prefill

Q jumps = over —> the > lazy > dog

The quick brown fox

prompt output

\ J \ J | ) | )\ J
Y Y | Y Y
Time-to-first-token Inter-token Latency
(TTFT) (ITL)
\ J
|
End-to-End (E2E)
Latency
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Hands-on Tutorial
[SGLang, vLLM]

SGLang: https://docs.sglang.ai/
vLLM: https://github.com/vlim-project/vliim
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Example Workloads

OSL

Example Workload

256

Conversation/translation/paraphrase questions

256

Higher batch size
Conversation/translation/paraphrase questions

4096

Heavy reasoning tasks

256

Summarization tasks
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Trends in MoE Architectures

Number of Experts vs Parameters per Expert Over Time
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Tensor Parallelism (TP) vs. Data Parallelism (DP) Attention

[DeepSeek-V3]
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TP vs. DP Attention [DeepSeek-V3]
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TP vs. DP Attention [DeepSeek-V3]
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TP vs. DP Attention [DeepSeek-V3]

Multi-Head Attention (MHA)

Values l l l l
number of

Queries heads = 4

Prompt: The quick brown fox jumps over

Memory requirements: | xbxsxnxh x 2
With TP:

Ixbxsx(n/TP)xhx2

With DP:

IX(b/DP)xsxnxhx2

24

I: num of attention layers
b: batch size

s: context length

n: num of heads

h: head dimension

c_kv: compressed latent vector

Multi-Head Latent Attention (MLA)

Memory requirements: | x b x s x c_kv

Example:
Deepseek-V3

With TP:
Ixbxsxc_kv
With DP:
| x (b/DP)xs xc_kv
AMD ¢\
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Tensor Parallelism (TP) vs. Data Parallelism (DP) Attention

[DeepSeek-V3]
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TP vs. DP Attention [DeepSeek-V3]
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TP vs. DP Attention [DeepSeek-V3]
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Trends in MoE Architectures

Number of Experts vs Parameters per Expert Over Time
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Tensor Parallelism (TP) vs. Expert Parallelism (EP) [Mixtral 8x7B]
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Tensor Parallelism (TP) vs. Expert Parallelism (EP) [Mixtral 8x7B]
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MoE Variable-length Computations & Communications

Device 0 (D0) Device i (Di) Main Challenges:
Variable-length Computation &
Communication Kernels
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Deepseek-V3 Token-to-Expert Distribution
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Impact on Performance

Skewed Load @ lIdeal Load Compute @ Communication Synchronization Compute [ Communication Synchronization

33% Performance Degradation Due To Workload Imbalance Across GPUs
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MoE Compute Kernels

Attention

=]

A

Hidden states

Expert weights
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Llama 3.1 405 B: (M: batch size, K: 16K, N: 53K)
MOE ComPUte Kernels DeepSeek-v3: (M:batch-size, K: 7K, N: 4K, experts:256, Topk=8)

=]

Expert weights

Attention A

Hidden states

* Poor arithmetic intensity (n-dim is much smaller in MoEs) — memory-bound kernels
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MoE Compute Kernels

Llama 3.1 405 B: (M: batch size, K: 16K, N: 53K)
DeepSeek-v3: (M:batch-size, K: 7K, N: 4K, experts:256, Topk=8)

=]

Expert weights

Attention A

Hidden states

Poor arithmetic intensity (n-dim is much smaller in MoEs) — memory-bound kernels

Sparse with uncoalesced memory accesses — Needs sorting & re-sorting
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MoE Compute Kernels

Attention A

Hidden states

=]

Expert weights

Poor arithmetic intensity (n-dim is much smaller in MoEs) — memory-bound kernels
Sparse with uncoalesced memory accesses — Needs sorting & re-sorting

Uneven distribution of compute to experts — poor resource utilization

Mixtral 8x7B: (M: batch size, K:4096, N:28672, local_experts:8, Topk=2)
DeepSeek-v3: (M:batch-size, K:7168, N:4096, local_experts:16, Topk=8)
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Sorting

Attention

First step: Sorting

A

Hidden states

=]

Expert weights
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Padding & Preparing Blocks for GEMM Computation

A

Expert activations

A -

Hidden states

» First step: Sorting
« Second step: Padding & preparing blocks with meta data

40

=]

Expert weights

C

Expert outputs

AMDZU
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Every Block Has Its Own Expert Index

A B C

Expert activations Expert weights Expert outputs

X
A

Hidden states

» First step: Sorting -
« Second step: Padding & preparing blocks with meta data

* Third step: Compute
AMDZ1

Source: https://docs.vlim.ai/en/latest/design/moe_kernel_features.html#modular-kernel-families together we advance_
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Hands-on Tutorial
[SGLang, vLLM]

SGLang: https://docs.sglang.ai/
vLLM: https://github.com/vlim-project/vliim
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AMD AITER Kernels

Output Token Throughput

OovLLM  CAITER

AITER

Al T

C++ API Torch API

1.80
1.60
1.40 1.26

1.20 1.00 1.00
1.00
0.80
0.60
0.40
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0.00
TP EP

AMD GPU Parallelization Technique

https://github.com/ROCm/aiter

1.55

Norm. Throughput (tokens/sec)
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Summary
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Summary

Presented the trends in attention layer implementations and MoE layer implementations

Introduced LLM performance metrics

Discussed the effect of parallelization techniques on performance metrics of DeepSeek-v3 and Mixtral 8x7B model
Discussed the computational and communication challenges while running MoE inference

Discussed the impact of AMD AITER kernel library end-to-end performance of LLMs

AMDZU
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Tensor Parallelism (TP) vs. Expert Parallelism (EP) [Deepseek-V3]
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MoE Scaling Laws

Sparsity 5

(a) IsoFLOP surface over sparsity and total parameters

Best pre-training losses: larger Best pre-training losses: fewer (not fewest!)
models with increased sparsity active parameters and increased sparsity
AMDZ1

Samira Abnar, et. al., Parameters vs. FLOPs: Scaling Laws for Optimal Sparsity for Mixture-of-Experts Language Models, https://arxiv.org/abs/2501.12370, 2025.
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Attention Parallelization Techniques

Tensor Parallelism

GPUO

Multi-Head Attention (MHA)
Values l . . .
Valuesl l l l
Q0 HE
111

Queries number of heads =4

GPU1

Prompt: The quick brown fox jumps over

AMDZU
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Data Parallel Attention & Multi-Head Attention

Data Parallel Attention

GPUO

GPU1
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Data Parallel Multi-Head Attention

GPUO

vawes | EERBNTI
§ |
| |

s HRBENENIN

GPU1

Va'uesIIIIIIIIIIIIIIII%
KeysIIIIIIIIIIIIIIII;

\ \

| '

]

l} 1

1 1

l} 1

1 1

l} 1

1 1

l} 1

1 1

l} 1

1 1

l} 1

1 1

l} 1

) ;
\

AN /I

AMDZU

together we advance_



53

LLM Performance Metrics (Latency)

TTFT for each prompt
ITL for each output

25/50/99 Percentiles for
 TTFT for a batch of prompts
« |TL for a batch of outputs

- Decode
Prefill
Q jumps — over —> the — lazy > dog
The quick brown fox
prompt output
\ J | )\ J | J
Y | Y | Y
Time-to-first-token Inter-token Latency
(TTFT) (ITL)
\
Y
End-to-End (E2E)
Latency
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Multi-Head Attention Parallelization: Tensor Parallelism

Multi-Head Attention (MHA)

Valuesl l l l

Queries number of
heads =4

Prompt: The quick brown fox jumps over

Tensor Parallelism

GPUO

Values l l
Keys l l
Queries l l

GPU1

Keys l l
Queries l l

Values
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TP vs. DP Attention [Mixtral 8x7B]

TTFT E2E Latency
OTP CDP OTP CDP
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DP outperforms TP for conversation questions with large batch sizes
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Decode

s First Output
Q, User —, Tokenization — Prefill —» . » Detokenization —» Tokenp
TO

TP vs. DP Attention [Mixtral 8x7B]

9 Prompt

4096 _256 256 case: TP vs DP attention

Decode

User izati . Final Output
roo Prompt > Tokenization —»  Prefill > a—~= e H » Detokenization > Tokenp
v v v

TP atte ntion DP atte ntion ‘ Inter Token Latency (ITL)

Note: Detokenization happens after each decode step. Each token (TO, T1, T2) is detokenized and output
sequentially, not just the final one (T3)

End-to-End Latency

Serving Benchmark Result
Successful requests:
Benchmark duration (s):
Total input tokens: 1843441
Total generated tokens: 869796
Request throughput (req/s): 45,91
Output token throughput (tok/s): 9748.52
Peak output token throughput (tok/s): 24326.00
Peak concurrent requests: 4896, 60
Total Token throughput (tok/s): 21443.31

Time to First Token

== == Serving Benchmark Result ==
Successful requests:
Benchmark duration (s):
Total input tokens:
Total generated tokens:
Request throughput (req/s):
Output token throughput (tok/s):
Peak output token throughput (tok/s):
Peak concurrent requests:
Total Token throughput (tok/s):
Time to First Token

E2EL —
ITL = TPOT =
Total Output

Across multiple requests, however, the difference comes down to how you average:

Sum of all ITLs a

Average ITL =
verage Total Output Token:

Mean TTFT (ms):
Median TTFT (ms):
P99 TTFT (ms):
Time per Output Token (excl. 1lst token)-
Mean TPOT (ms):
Median TPOT (ms):
P99 TPOT (ms):

Mean TTFT (ms):
Median TTFT (ms):
P99 TTFT (ms):

Time per Output Token (excl. 1st token)
Mean TPOT (ms): 134
Median TPOT (ms): ]
P99 TPOT (ms):

In this case, the average ITL is different from the average TPOT since the latter is usually calculated as
follows:

TPOT; + TPOT, 4 --- 4+ TPOTy

Average TPOT =

Inter-token
Mean ITL (ms):
Median ITL (ms):
P99 ITL (ms)

Mean ITL (ms):
Median ITL (ms):
P99 ITL (ms)

Both kernel latencies & scheduling approach are in play here
AMDQ

together we advance_
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