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Drexel University — Electrical & Computer Engineering

Drexel University:

+ Founded in 1891 by financier and philanthropist
Anthony J. Drexel

+ Location: four campuses: 3 in Philadelphia, | in
New Jersey (Mt. Laurel)

+ Student Enrollment: 15,346 undergraduates
8,859 graduate and professional students

+ Student Geographic Distribution: Students
come from 50 U.S. states and |30 foreign countries.
Nearly 8% are international students

Bossone building
(home to College of
Engineering labs)
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DREXEL UNIVERSITY - IOANNIS SAVIDIS GROUP
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Degrees: B.S.E., Duke University
M.S., University of Rochester
Ph.D., University of Rochester (2013)

Research Interests

Analysis, modeling, and design methodologies for high performance digital and mixed-signal integrated circuits; Emerging integrated circuit
technologies; Electrical and thermal modeling and characterization, signal and power integrity, and power and clock delivery for 3-D IC
technologies; hardware security (obfuscation and side-channel analysis); algorithms and methodologies for design automation including ML/Al
based optimization; On-chip power management; Low-power circuit techniques; Algorithms and methodologies for secure IC design

LABORATORY & TEAM

Eight Ph.D. students
- Alec Aversa — Sequential digital circuit obfuscation
- Saran Phatharodom — Digital obfuscation metrics
- Jeff Wu — Application of ML/Al to analog/RF IC design
- Ziyi Chen —Analog IP protection
- Ashish Sharma — Heterogeneous circuit integration
- Pratik Shrestha — Digital security and application of ML/Al to digital IC design
- Nnaemeka Achebe — Application of ML to RF design
- AmitVarde — EDA foundational modeling, ML based analog design

One M.S. student
* David Binder — dataset generation for digital |IC ML/Al EDA problems

2,000 square feet of dedicated research space
Access to leading CAD software packages: Cadence (Virtuoso, Innovus, Assura, Quantus, Genus, etc.),

Synopsys (FusionCompiler, PrimeTime, Hspice, Taurus, etc.), and Siemens Mentor Graphics (Calibre)
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ICE Research:

Heterogeneous Chiplet
and 3-D Integration

- 3-D/VLSI design methodologies
for power and clock network
design

- Multi-plane power noise
modeling

- Methodologies to mitigate
cross-plane coupling

- Power management for multi-
domain, multi-plane delivery

- Clock tree synthesis for
heterogeneous device planes

- Multi-physics modeling of
electro-thermal-mechanical
characteristics of 3-D ICs

- Test vehicle design and

characterization (three fabricated

and tested ICs)

6 UNIVERSITY

Heterogeneous & Reconfigurable Integration
for Edge Compute

ML/AI Circuit Design | Hardware Security & Trust

-Near-threshold circuits (NTC) - Real time Trojan detection

for low-power applications - FPGA security and IP protection
- Implement circuit - Detection of hardware Trojans

families including CMOS = IRl s side-elimmm]

nd current mode logic in monitoring
?\ITCCLJ - S - Attack prevention with trusted design

. - Metrics to quantify security
-Leakage reuse for multi-voltage - Algorithms and methodologies to
domain systems

obfuscate digital circuits
-Energy efficient heterogeneous

DNN accelerators
-Power management for multi-

domain delivery

- Applied algorithms for clock
tree synthesis

- ML/Al algorithms for analog
transistor sizing

- Classification with
adaptive labeling

- SMT based optimization of
transistor sizing

- Graph based representation of
circuit netlist

- EDA-Learn: framework for
circuit data generation and ML
modeling

- Protection of analog circuits
- Circuit redaction using field
programmable analog arrays
- Key-based parameter obfuscation
- Heterogeneous IC security
(chiplet/3D)
- Trojan detection
- Side-channel analysis
- Secure multi-plane
communication

Objective:
Secure Heterogeneously
Integrated Circuits and Systems
for Edge Compute
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Outline of Presentation
|
- Introduction to Electronic Design Automation

- Machine learning techniques

- Case studies

- Standardizing ML for digital EDA

- Conclusions
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- Introduction to Electronic Design Automation

« Machine learning techniques

- Case studies
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- Conclusions

& Drexel

7



Background: Electronic Design Automation (EDA)

- EDA: a system of software solutions for the design of integrated circuits
- A wide range of applications:
- High-performance Computing

Autonomous vehicle
IoT
Al

- Primary Tools/Applications:

DESIGN APPLICATION SOFTWARE

(ﬁ,Dr exel
UNIVERSITY
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IC Design Cycle

Conceptual Design Design Implementation Production and

Phase Phase Validation Phase
System Architectural Functional : Logical Physical ' I~ Packaging
Specification [»] Design [ ] Design 7| Synthesis | Design [ Fabrication |—» and Testing

- Divided into three phases

Conceptual design:
requirement definition, high-level structural outlining, and functionality design

Design implementation:
translation of conceptual design into a logical representation and then a physical layout

Production and validation:
physical fabrication, packaging, and testing

- Design implementation phase has the highest scope of automation

& Drexel
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Digital IC Design Automation Flow

s T

- RTL-to-GDSII flow
Frontend: technology independent standardized design descriptions

Examples: VHDL, Verilog

Backend: physical implementation of circuits
Fabs provide Process Development Toolkits (PDK) and simulation models for fab

processes

(ﬁ,Dr exel
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Functional Design

{

Logical Synthesis

L J
Floorplanning

—

Placement

v

Clock Network
Synthesis

v

Routing

v

Signoff
Parasitic Prediction
Physical Verification

Static Timing Analysis
Power, IR-drop Analysis
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Digital IC Design Automation Flow — Conceptual Design
- Functional Design using Hardware Description Language

- Logical Synthesis
Convert hardware description language (HDL) into
technology (PDK) specific standard cells

Translation + Mapping + Optimization

residue = 16"h0000:
if (high bits == 2'b10)
residue = state_table[index]:

else
state_table[index] =
16710000

Hardware Description
Language (HDL)

Generic Boolean
(GTECH)

Target Technology
(standard cells)

& Drexel

Functional Design

{

Logical Synthesis

P A—

| Floorplanning

i v
Placement

v

Clock Network
Synthesis

v

Routing

¥

Signoff
Parasitic Prediction
Physical Verification

Static Timing Analysis
Power, IR-drop Analysis
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- Logical Synthesis

- Physical Design

layout to be fabricated

Circuit

& Drexel

Transform a technology mapped logical circuit into actual

Optimize placement of cells and interconnections to optimize
performance, power, and area constraints

Digital IC Design Automation Flow — Design Implementation
L}

- Functional Design using Hardware Description Language

Functional Design

{

Logical Synthesis

I

v @
Floorplanning

) v )
Placement
v

Clock Network
Synthesis

————

Routing

I

¥

Signoff

Parasitic

Prediction

Physical Verification
Static Timing Analysis
Power, IR-drop Analysis
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- Logical Synthesis
- Physical Design

- Verification and signoff

Confirm circuit conforms with
power, performance, area budget

Fix circuit if design requirements not met

& Drexel

- Functional Design using Hardware Description Language

Digital IC Design Automation Flow — Design Adjustments

Functional Design

Logical Synthesis

- buffer insertion

- date sizing

- timing driven re-structuring
- logical modifications

»  Floorplanning ‘

Design adjustments

Clock Network

Synthesis
v

No

Meets

power, performance, area -«

budget?

Yes

Signoff
Parasitic Prediction
Physical Verification

Static Timing Analysis
Power, IR-drop Analysis

1 >
Placement }—

Routing '—»

Estimated Static
Timing Analysis

Extracted Static
Timing Analysis

F» Tapeout
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Overview of Heuristic Approaches for Design Synthesis
L}
- Rule based (heuristics) + Optimization
Time and resource expensive

- Example: Recursive Placement using "Min-Cut" Approach

Rule based (heuristics): cut the circuit into 2 pieces, partition gates across the 2 sides
Continue executing recursively with resulting partitions of each step

X X X XX X

% X | it

i o B e

% %X X SR RN 2 T R
x X XX%Q x x

All the gates 1st cut 2nd cut 3rd cut...

Optimization: minimize wiring between partitions
Provided each net has a cost ¢;;, minimize total sum of costs of nets across cut
minimize T = Zcyt nets G

& Drexel
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Challenges of Digital IC Synthesis
.}

Moore’s Lav

- Complexity of design tasks
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Source: en.wikipedia.org/wiki/Moore's_law




Challenges of Digital IC Synthesis
L}

Source: Alder Lake P (6P + 8E + 96 EU) die shot from Intel on ReddIt - https:/ /www.reddit.com/t/Intel/ comments/se10cx/today_ama_from_830am_to_300_pm_pst_12th_¢

- Complexity of design tasks ;
Apple M3: 25 billion transistors ' REL
Apple M3 Pro: 37 billion transistors

Apple M3 Max: 92 billion transistors

(Gracemont, =8
—CRUICSTe:

- Complexity of computational
platform L ey
o SoCs with mixed-signal functionality s | i i

Source: a
Source: Die walkthrough:Alder Lake-S/P and a touch of Zen 3 (substack.com)

& Drexel
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Challenges of Digital IC Synthesis
.} -

» Complexity of design tasks
< Ky By B

- Technology node scaling challenges

DIGITIMES

Source: www.digitimes.com/news/a20200702PD200.html|

& Drexel
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Challenges of Digital IC Synthesis

- Complexity of design tasks
- Technology node scaling challenges

Iterative nature

Optimal design requires multiple iterations

Change in upstream parameters have
significant downstream effects

Expensive design flow
One iteration may take from
hours to days to complete

(ﬁ,D exel
UNIVERSITY

1 >
: " > Placement
Design adjustments _
- buffer insertion
- date sizing

- timing driven re-structuring
- logical on;

Functional Design

Logical Synthesis

>

Floorplanning }

Clock Network
Synthesis

|

Signoff
Parasitic Prediction
Physical Verification

Static Timing Analysis
Power, IR-drop Analysis

No

Meets
power, performance, area «—|
budget?

[
Yes F"

Estimated Static
Timing Analysis

Extracted Static
Timing Analysis

Tapeout

19

Machine Learning for EDA

- Prediction

Can we predict post placement wirelength before
placement?

Optimization

current placed design?

Generation

& Drexel

Model the design space and predict circuit parameters

Improve on a circuit state or state of a circuit component
Can we use previous placement knowledge to improve

Create a circuit component without any pre-existing state

Can we generate a completely new placement solution?

Design
Generation

RTL/Netlist to GDSII
Placement generation
CTS generation
Routing generation

Design Optimization/Improvement

Placement, CTS, Routing optimization
to optimize/improve
power, performance, area, DRC violation
Placement cell clustering  Clock sink clustering

Early Warning/Downstream Metric Prediction

Timing Predlcnon (arrival time, slack)
Parasitic length predicti
IR drop prediction  Power (total, PDN, cell) prediction Thermal profile prediction
Resynthesis prediction Critical path identification DRC violation prediction Hotspot prediction

20




Machine Learning for EDA

- Transfer Learning
Reuse learned knowledge from previous designs

Design
and nodes to accelerate model development Generation
Can we adapt pretrained models to new technologies RTL/Netlist to GDSII

. . . . Placement generation
and designs with minimal fine-tuning? CTS generation

Routing generation

Design Optimization/Improvement

- Large Language Models (LLM)

Placement, CTS, Routing optimization

Used across the pyramid to assist reasoning, 1o optimize/improve
. . power, performance, area, DRC violation
debugglng: and ﬂOW Steerlng throughOUt the Placement cell clustering  Clock sink clustering

Bujuiea Jajsuel)
sjepojy abenbue] abieq

EDA design process

Early Warning/Downstream Metric Prediction

Timing Prediction (arrival time, slack)
Parasitic impedance prediction  Interconnect length prediction
IR drop prediction  Power (total, PDN, cell) prediction Thermal profile prediction
Resynthesis prediction  Critical path identification DRC violation prediction Hotspot prediction

& Drexel
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Interests in ML for EDA
K =]

- Papers mentioning design automation and machine learning

Papers mentioning design automation and machine learning

—e— observed

m 2025YTD
10000

8000

6000 -

Number of Papers

g
o

2000 A

& Drexel
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Outline of Presentation
S
- Introduction to Electronic Design Automation

- Machine learning techniques

- Case studies

- Standardizing ML for digital EDA

- Conclusions

& Drexel
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Families of Machine Learning Algorithms

- Train models to learn from data

Machine Learning
v

¥ ¥
| |
- Leverage information from data to Leaing Leaming Learning Leaming
improve performance on prediction |- EE —»@
and generation tasks e ) —
Separation
Dimensionality Models alliods

Semi-Supervised Reinforcement

Polynomial L.l
D' 1 th h . Reduction
wverse algorithm chnoices _,

Based on application R
Based on complexity

Based on data format

Anomaly
e EE
~

Trees
g Deep Learning
-

DI'eX A.Moubayed, M. Injadat, A. B. Nassif, H. Lutfiyya and A. Shami, "E-Learning: Challenges and Research Opportunities Using Machine Learning & Data Analytics," IEEE
UnivErsiTy AccessVol.6,No.l,pp.39117-39138, July 2018
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Machine Learning for EDA

- Prediction
Model the design space and predict circuit parameters
Can we predict post placement wirelength before placement?

Design
Generation

RTL/Netlist to GDSII
Placement generation
CTS generation
Routing generation

- Optimization
Improve on a circuit state or state of a circuit component

Can we use previous placement knowledge to improve

current p]aced desjgn'.) Design Optimization/Improvement

Placement, CTS, Routing optimization
to optimize/improve
power, performance, area, DRC violation
Placement cell clustering  Clock sink clustering

- Generation

Create a circuit component without any pre-existing state

. Early Warning/Downstream Metric Prediction
Can we generate a completely new placement solution?
Timing Prediction (arrival time, slack)

Parasitic impedance prediction  Interconnect length prediction
IR drop prediction  Power (total, PDN, cell) prediction Thermal profile prediction
Resynthesis prediction  Critical path identification DRC violation prediction Hotspot prediction

& Drexel

Bujuiea Jajsuel)

sjepojy abenbue] abieq

25

Regression

- Model the relationship between a dependent (target) variable and one or more
independent (predictor) variables

20

m=0.0371 ¢ =0.0007 .

Linear Regression
A linear regression model is given by -

y=/60+61$1+,62$2+...+Bngjn+e ..-...

where »
y is the dependent variable
x; are independent variables o
B are coefficients Y g
€ is the error term ' % “ % &

Coefficients are optimized by minimizing error between
actual value (y) and predicted value (g) over multiple epochs

& Drexel

Source: keytodatascience.com
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Classification

- Categorize new, unseen data based on learning from a feature dataset with known labels

15 Epochs: 1
Logistic Regression — Decision Boundary
10 L I o L ]
. . + . . . . . ?.7.. ....o © 0a8°0 0 ag
Linear regression + logistic (sigmoid) function . .i.\.':.'. L& "":;.;' 3°% J.’!.,.. ),7'::, .-.:.
. LY 5.9¢ L ¥ 7YY
: ; . 00 .' . : L 19 -’:k 2 .a:...‘:.é:'« ; g’:."
Linear regression backbone given by
y=PBo+ Brr+ Bawa+ ... + Butn €
-1.0
Activation with the Sigmoid Function asF—
Sigmoid function maps linear combination (y) to a (0,1) range o
Interpret Sigmoid function as the probability of the positive class
1 230 0.2 04 06 0.8 10

W =T

& Drexel
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Machine Learning for EDA

- Prediction

Model the design space and predict circuit parameters
Can we predict post placement wirelength before placement? i

Regression, Classification Generation

RTL/Netlist to GDSII
Placement generation
CTS generation

Optlmlzatlon Routing generation
Improve on a circuit state or state of a circuit component

Can we use previous placement knowledge to improve
Placement, CTS, Routing optimization

ion?
current placed design? s
power, performance, area, DRC violation
Placement cell clustering  Clock sink clustering

Design Optimization/Improvement

Bujuiea Jojsuei

Generation

. . . . e Early Warning/Downstream Metric Prediction
Create a circuit component without any pre-existing state Y g

R Timing Prediction (arrival time, slack)
Can we generate a completely new placement solution? Parasitic impedance prediction  Interconnect length prediction
IR drop prediction Power (total, PDN, cell) prediction Thermal profile prediction
Resynthesis prediction  Critical path identification DRC violation prediction Hotspot prediction

s|apojy abenbue-] abie

& Drexel
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Machine Learning for EDA

- Prediction

Model the design space and predict circuit parameters
Can we predict post placement wirelength before placement? i

Regression, Classification Generation

RTL/Netlist to GDSII
Placement generation
. . . CTS generation

. Optlleathn Routing generation

Improve on a circuit state or state of a circuit component
. . Design Optimization/Improvement
Can we use previous placement knowledge to improve

H Placement, CTS, Routing optimization
current placed design? ekl

power, performance, area, DRC violation
Placement cell clustering  Clock sink clustering

Bujuiea Jajsuel)
sjepojy abenbue] abieq

- Generation

. . . .. Early Warning/Downstream Metric Prediction
Create a circuit component without any pre-existing state

Timing Prediction (arrival time, slack)
Can we generate a completely new placement solution? Parasitic impedance prediction  Interconnect length prediction
IR drop prediction  Power (total, PDN, cell) prediction Thermal profile prediction
Resynthesis prediction  Critical path identification DRC violation prediction Hotspot prediction

& Drexel
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Clustering

- Group sets of objects that are similar to each other in a cluster

K-NeareSt Neighbor Algorithm KMeans Iteration: Total Within Cluster Sum of Squares:
Classify based on distance between new data :
point and k nearest known data points
Distance metrics:
Euclidean distance, Manhattan distance,
Hamming distance ...

Requires storage of all data
'Lazy learning'

Advantages:
Easy to implement and adapt 5 ; . " —
Few hyperparameters Kmeans Iterations

250k
200k
‘ 150k
100k

50k

Limitations:
Does not scale well to large dataset with high dimensionality
Bottleneck in memory

ﬁDreXel Source: dashee87 github.io

UNIVERSITY
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Optimization
|

- Aim to find the most efficient solution from a set of available options

A Objective

Key Components

- Objective Function
Goal of optimization

Local Optima ¥ Local Optima
- Constraints < Local and Global Optima
Conditions that the solution must satisfy >
Search Space
- Global optima and local optima State Space .
Search — Initial State
- Searchable state space X = T
X|o X X 1] X
1]
1]
& Drexel
UNIVERSITY
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Gradient-based Optimization Algorithms
|

- At each step, search direction is defined by the
gradient of the objective function

Intuitively, search along direction that reduces cost
function at fastest rate

- Gradient descent
First-order search of local optimum

0
9] = 0} — a’a—ej](eo,@l)

- Advantages:

Theoretical guarantee of optimality

Fast execution for each iteration of search
- Limitations:

Requires explicit differentiable functions

Slow convergence and local minima for non-convex
search space

& Drexel

Source: Interactivechaos.com
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Optimization Algorithms

- Gradient-based algorithms

- Heuristic/Classic algorithms
Greedy algorithms
Divide and conquer
Dynamic programming
Network flow algorithms
Linear/integer programming
Evolution-based algorithms
Simulated annealing
SAT

- Learning-based algorithms
Reinforcement learning
Surrogate-assisted optimization algorithms

UNIVERSITY

General flow of optimization process

Require: Objective function f
29 + random point in the domain of f

fori=1,2,.
Az + 77( {x(o) L,z(-DY)
if stopping condmon is met then

return z(:—1)

end if
2@ 20D 4 Ag

end for

(ﬁ,D Xel K. Li, ). Malik, "Learning to optimize," Proceedings of the International Conference on Learning Representations (ICLR), pp. I-13,April 2017
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Evolutionary Algorithms

- Characteristics of evolutionary algorithms
Population-Based
Fitness-Oriented
A fitness parameter to represent the quality of a solution
Variation-Driven
Crossover and mutation generates variants randomly

- Broad categories
Genetic algorithm
Particle swarm
Differential evolution

& Drexel
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General flow of evolutionary algorithms

> Population

v

Fitness Evaluation

v

Parent Selection

v

Crossover and
Mutation

v

Offspring
(Next-Generation Solutions)

34
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Simulated Annealing
L}

- A global optimization technique by approximation
- Preferred when search space is discrete
- Parameter: a temperature value that keeps decreasing
temperature=(initial temperature)/(iteration+1)
- Steps:
Randomly initialize design variables and evaluate function value fuq
Sample again in the neighboring region and evaluate function value fhew
Action:
If function value improves, accept.
If function value worsens, accept with probability e~ (frew—fola)/temperature

- Advantage:

Reduces chance of getting stuck at local optimum since worse candidates are accepted with lower
probability.

& Drexel
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Re-enforcement Learning
I
- Agent is trained to identify optimal strategies for decision-making in complex, uncertain
environments to achieve its objectives.

>
- Key Components Agent
Agent: Al designer State
Action
Environment: The world through which the Reward
agent operates Environment  |l¢—— |

Action: All the possible actions the agent can execute
State: The current conditions as reported by the environment

Reward: An immediate feedback from the environment to evaluate the agent's last action

& Drexel
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Classical Machine Learning Applications

- Regression
Linear Regression
Lasso Regression (L1 Regularization)

- Optimization
Gradient Descent

. . .. Linear/integer programming
Ridge Regression (L2 Regularization)

Bayesian Linear Regression Simulated Annealing

Particle Swarm Optimization
Ant Colony Optimization

+ Classification Evolution-based algorithms

Logistic Regression Genetic Algorithm
Decision Trees Re-enforcement Learning
Random Forest Value Iteration

Support Vector Machines (SVM) Policy Iteration

Naive Bayes Q-Learning

- Clustering
K-Means Clustering
Mean Shift Clustering
Spectral Clustering

(ﬁ,Dr exel
UNIVERSITY
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Machine Learning for EDA

Prediction

Model the design space and predict circuit parameters
Can we predict post placement wirelength before placement?
Regression, Classification

Design
Generation

RTL/Netlist to GDSII
Placement generation
CTS generation

Optlmlzatlon Routing generation
N N =l
Improve on a circuit state or state of a circuit component 8
. . Design Optimization/Improvement %
Can we use previous placement knowledge to improve g
. oY Placement, CTS, Routing optimization =
current placed design® t0 optimize/improve ]
. . . . . power, performance, area, DRC violation §
Clustering, Optimization (Gradient Descent Placement cell clustering  Clock sink clustering 3

Simulate Annealing, Re-enforcement Learning ...)

Early Warning/Downstream Metric Prediction

Timing Prediction (arrival time, slack)

Generation Parasiic i prediction length predicti
. . . IR drop prediction  Power (total, PDN, cell) prediction Thermal profile prediction
Create a circuit Component without any Resynthesis prediction ~ Critical path identification  DRC violation prediction Hotspot prediction

pre-existing state

sjapojy abenbue abieq

Can we generate a completely new placement solution?

& Drexel
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Classical Machine Learning Applications

- Regression
Linear Regression
Lasso Regression (L1 Regularization)
Ridge Regression (L2 Regularization)
Bayesian Linear Regression

- Classification
Logistic Regression
Decision Trees
Random Forest
Support Vector Machines (SVM)
Naive Bayes

- Clustering
K-Means Clustering
Mean Shift Clustering
Spectral Clustering

& Drexel

- Optimization

Gradient Descent
Linear/integer programming
Simulated Annealing
Particle Swarm Optimization
Ant Colony Optimization
Evolution-based algorithms

Genetic Algorithm
Re-enforcement Learning

Value Iteration

Policy Iteration

Q-Learning

Where are Neural Networks???

39

Classical

Machine Learning Progression: Classical ML vs Deep Neural Networks
|

Machine Learning

» Rooted in statistical methods

» Heavily relies on domain
knowledge for feature selection >

o Well-suited for smaller datasets
and simpler problems

* Models are generally more

Transition to
Deep Learning

« Greater data availability and
complex problem-solving needs

e Improvements in compute
power, especially GPUs

Deep Neural Networks

* Handles large datasets and
complex problem spaces

» Eliminates need for manual
> feature engineering
(automatically discovering
latent representations)

« Offer flexibility and
expansiveness

interpretable

& Drexel
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Machine Learning Progression: Classical ML vs Deep Neural Networks
|

Classical
Machine Learning

Deep Neural Networks

Transition to ¢ Handles large datasets and

» Rooted in statistical methods - complex problem spaces
Deep Learning

» Heavily relies on domain o Eliminates need for manual

knowledge for feature selection > * Greater data availabilit.y and > feature engineering
complex problem-solving needs (automatically discovering
» Well-suited for smaller datasets latent representations)

and simpler problems e Improvements in compute

EanEn ez Eall EH « Offer flexibility and

* Models are generally more expansiveness
interpretable

& Drexel
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Perceptron/Neuron vs Logistic Regression: They are the same!

- Deep neural network <-> a stacked network of neurons

Error Error

A neural network maps from input neurons to & w"\ & @
output labels
X > Wi — Y y Xt w3 s [ y
: / Outputs : / Outputs
Each neuron performs logistic regression n .6 n .6
— T Inputs Inputs
hw'b (x) - f(w X + b) Linear Regression Logistic Regression

Each input neuron represents a piece of the data
(image pixel, transistor feature, net feature, ...) X
Yo
Works well for tabular data X :
Yn
Xn Outputs
Inputs
ﬁDreXel Deep Neural Network
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Circuits as Images

- Images represent structural information of the IC

Sub-components of circuit are isolated as different image representations

a) original image b) image in four different filters c) trail routing d) flip flops e) clock nets

Image features

ﬁ! Y.-C.Lu,). Lee,A.Agnesina, K. Samadi, and S. K. Lim. "GAN-CTS:A generative adversarial framework for clock tree prediction and optimization," Proceedings of the
UNIV r an-y IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 1-8, Nov. 2019.

43

Circuits as Graph Representations
|
Structural information and connections are represented efficiently as compared to an image

- Node and edge attributes as feature-set allows for a richer representation
- Positional information is lost

- Ut

U37502ZN il
=g nsaena) Rz = e
vaRe v228:A2 U377'5p31- L)
BUF @) 492 i n3481:16 U132 n3481.1!
u1325:82 U1328%2 ,}329 A2

cknet 0 CK n3481.13
UI60:A1 n3381.17
e,
3 511}3
clknet_1 0 leaf CK clknet_1 1_leaf CK
U13217A2 5:A2
»mM«w lege
Clock tree representation Interconnect segment graph
o o @ -~ T .
* * - . . r
Netlist graph representation . . o b
o=
* * = .
Y™ * I .

ﬁD exel Timing Path Graphs

UNIVERSITY
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Spatial Graph Representations
45
- Contains structural and attribute information of graphs as well as positional information
- Spatial graph ML are new frontiers of research
g E 2 FY
3 2 & —72
g - g “ :‘.‘
$
; —
T T3 S coonainate ) T coontomte )
Spatial Interconnect Graph
Spatial graph network
& Drexel
45
Convolution: Beyond Numerical Data
- Convolutions
Embed complex data structures into lower-dimensional vector representations
Combines local information through a series of learnable filters or aggregation functions
Embedded vectors can be used as inputs to a neural network
- Key data structures
[ ] x
- TR Xo
Images =
aoenl X3
[ ‘ Yo
— ) X4
~2 P —
Graphs | :A, = \ < > Convolution S Yo
Vol I /ﬂT i 80 Outputs
I 1
) .
Vector
ﬁDreXel Repr:sce:tation
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Convolutional Neural Network (CNN) Layer

____________________________________________________________________§ |

- Operates on grid-like data structures where the data is represented in a structured,

Euclidean space

- Each cell on the grid (pixel) is updated by the weighted sum of the current cell value and

neighboring cell values

- Captures local patterns like edges, colors, and textures in the early layers, and more
complex patterns (like parts of objects) in deeper layers

Input data

(ﬁ,D exel
UNIVERSITY

1011 0tao el
0i1i1:1i0 10 1
oioi1i1i1] |o - '
0i01 " Tto_ <0
0oi1i1i0io0

Kernel

+4 :3: 4 1*1=1
...... 4 0v0c0

=70 0°1=0
1+0=0

7 1%1=1

7 0°0=0

- 19121
170=0

s o ] =
p 17121

»

Convoluted feature

Source: analyticsvidhya.com
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& Drexel

Graph Convolutional Neural Network (GCN) Layer

- Applied to graph-structured data, representing entities (nodes) and their relationships
(edges) in a non-Euclidean space

- Key idea: Generate node embeddings based on local network neighborhoods

Converts graph structures and attributes into vector representations
Use CNN-like convolutional deep neural layers to train model

Gconv
Graph v
P— — |
¢ ¥ o
18 "
-]
ST
L) L
o - .
L .
o A < |
©0ee) | B
X wm)

Pooling

Gconv

-

Readout MLP

Softmax

0

—>§§
3»;
o

| o000 00

Z.Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S.Y. Philip. "A comprehensive survey on graph neural networks," IEEE Transactions on Neural Networks and Learning
Systems,Vol. 32, No. |, pp. 4-24, Jan. 2020.
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Vanilla Graph Convolutional Neural Networks (GCN)
| 49

Three primary steps:

1) Generate embeddings h;for each graph node i
Map original feature vectors to vectors of a fixed dimension via linear neural network layers

[ Node embedding layers ]

& Drexel

49

Vanilla Graph Convolutional Neural Networks (GCN)
| 50
Three primary steps:
1) Generate embeddings h;for each graph node i

Map original feature vectors to vectors of a fixed dimension via linear neural network layers

2) Aggregate embeddings of each node with embeddings of the neighboring nodes

( ) Blas vector Index set of direct neighboring nodes of node i ( )

[+1 (1) Ly (pd

/hf,; TU (b + Z 1= N (4) ci Mg h )

New embedding of node i Nonlinear activation function Current embedding of node j

Normalization coeffc1ent Weight vector

[ Node embedding layers ] |:> [ Aggregation layers ]
ﬁyg\)l\ E R%?l

50
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Vanilla Graph Convolutional Neural Networks (GCN)
|

Three primary steps:

1) Generate embeddings h;for each graph node i
Map original feature vectors to vectors of a fixed dimension via linear neural network layers

2) Aggregate embeddings of each node with embeddings of the neighboring nodes

( ) Blas vector Index set of direct neighboring nodes of node i ( )
[+l b 1 yypd
New embedding of node i Nonlinear activation function Current embedding of node j

Normalization coeff“ment Weight vector

3) Send final embeddings to linear neural network layers for target predictions

[ Node embedding layers ] |:> [ Aggregation layers ] |:> [ Linear layers for prediction ]
& Drexel

51

Variants of Graph Neural Networks: GraphSAGE
|

- GraphSAGE (Graph Sample and AggreGatE)

- Extends the idea of GCN by allowing for inductive learning
Generalizes to unseen nodes after being trained only on a subset of the graph

- Introduces a sampling technique to reduce the computational load

Instead of using all neighbor nodes, GraphSAGE samples a fixed number of neighbors and
aggregates features from those neighbors

More scalable and applicable to large or dynamic graphs

- Supports different types of aggregation functions
Mean pooling, max pooling

ﬁ J. K. Xu,W. Huy, ). Leskovec, and S. Jegelka, “How Powerful are Graph Neural Networks?,” Proceedings of the International Conference on Learning Representations
U\I\l Rsll\ (ICLR), pp. |-17,Dec 2018

52
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Variants of Graph Neural Networks: SGCN

- Leverages node position

- Generalization of both GCNs and CNNs

Normal GCN

. ® hi(lj7 b) = E ReLU(b)h]

AN ] : JEN:
SS S TSON SO0 DO OO O
] TS e
) - [SESESESES [SESESESE) hi(U,b) = Z ReLU(UT(pj —p)+b) Ok
(2) CNN (b) SGCN (c) GCN JEN; ‘\
Comparison of different neural convolutional filters. Each color denotes different Node co-ordinates

trainable weights

(a) Depicts convolutional filters for images
(b) Depicts spatial graph convolutions, and
(c) Depicts graph convolutions

cﬁ!DreXel T. Danel, P. Spurek, J. Tabor, M. 'Smieja. t. Struski, A. Stowik, and t. Maziarka, “Spatial graph convolutional networks,” Proceedings of the International Conference on
univERrsITY  Neurdl Information Processing (NIPS), pp. 668—675, Nov. 2020

53

Multi-model Networks
]

- Integrate multiple types of data or modes

. . . Ni ic Input Graph Input Graph Input
(e.g., text, images, sound) into a single model B ik i
. . X Linear Graph Convolution
Captures complex interactions not available e Layer S0t
from any single data type alone v
Linear Graph Convolution
Layers Layer Layer
I
v
v
Linear
Layers
v

& Drexel
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Machine Learning for EDA

- Prediction

Model the design space and predict circuit parameters

Can we predict post placement wirelength before placement? i

Regression, Classification, Clustering Generation

RTL/Netlist to GDSII
Placement generation
. . . CTS generation
. Optlleathn Routing generation

. . . . =y

Improve on a circuit state or state of a circuit component )
. . Design Optimization/Improvement E‘

Can we use previous placement knowledge to improve @
H Placement, CTS, Routing optimization =

current placed design? ekl 2
. Sanns . . power, performance, area, DRC violation 3,
Clustenn_g, Optlmlzatlon (Gradlent Descent, Placement cell clustering ~ Clock sink clustering a3

Simulate Annealing, Re-enforcement Learning ...)

Early Warning/Downstream Metric Prediction

: Timing Prediction (arrival time, slack)
° Generatlon Parasitic il i length predicti
IR drop prediction  Power (total, PDN, cell) prediction Thermal profile prediction
syhthesis prediction  Critical path identification DRC violation prediction  Hotspot prediction

Create a circuit component without any R
pre-existing state

D

s|apojy abenbue] abieq

Can we generate a completely new placement solution?

RL/Generative ML Y,

& Drexel
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Generative Adversarial Networks

- Discriminator: max V(D) = Ex~pdata(x) [logD (x)]|+ IE:z~pz(z) [log(1 — D(G(2)))]

- Generator objective function: minV(G) =|IEZ~pZ(Z) [log(1 — D(G (z)))]l

- Variants of GANs differ in objective function
- Suitable for prototype circuit design (layout) generation

v

X—>»  Discriminator
Real Data (Encoder) —>» D(x) —>» Cost

Generator
—2> (Decoder)

T

ﬁDreXel |. Goodfellow, et al., "Generative Adversarial Nets", Proceedings of the International Conference on Neural Information Processing System (NIPS),Vol. 2, No.|, pp.2672-
UNIVERSITY 2680, Dec.2014
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Variational Auto-Encoders (VAEs)
L}

- Generative algorithm to encode distribution of
training data, then generate new data with
similar distribution
- Encoder: map input to a low-dimensional
latent space Encoder Latent Space Decoder
Effectively dimensionality reduction

- Decoder: convert signal in latent space back to
input space

- Difference from GAN:
GAN generator takes noise as input
Higher-quality generation
Harder to train

VAE takes signal from the low-dimensional
latent space as input
Lower-quality generation

Easier to train

(ﬁ,DI’ Xel D. Kingma and M.Welling, "Auto-Encoding Variational Bayes," Proceedings of the International Conference on Learning Representations (ICLR), pp.|-14, Nov 2013
UNIVERSITY
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Large Language Models
. § |
- Transformer LLMs are next-token predictors
given a prefix text — model estimates probability distribution over possible next tokens

Model encodes prefix tokens — internal latent representation — then decoder + language modeling
head selects the next token

Generation = repeating this step autoregressively token by token to build full output sequence

Completion Text

Modeling

Langu{ige Softmax
Head

log
Unencoder layer

Transformer
Blocks

Encoder

and thanks

—

Prefix Text
ﬁD Xel Source: web.stanford.edu/~jurafsky/slp3/slides/LLM24aug.pdf

UNIVERSITY
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LLMs across the years

- rapid scale increases (parameters + data + compute) has driven major capability jumps
transition from simple text completion — reasoning-capable general foundation models

- current frontier models now outperform prior generations across law, STEM, medical, and
standardized academic exam

Category Exams GPT-4 % | GPT-3.5 %
Transformers GPT-2 MEENA LaMDA BERT Gopher Uniform Bar Exam 90 10
Architecture 1.58 Param 2.6B Param 1378 Parm 4808 Param 2808 Param Law LSAT 88 10

Aug 2017 Feb 2019 Jan 2020 Ju" 2021 Nov 2021 Dec 2021 - Evidenco-based Reading | 93 37
SAT & Writing
Math 89 70
Quantitative S0 25
Graduate Record Examination (GRE) Verbal 99 63
Med-PaLM2 P Atlas om3 Writing 51 51
GPT-1 Mar2023  BERT  pop ;0';’3“ GPT-3 ChatGPT  _ \ «  11BParam  GlaM 138 Param Biology 3 62
117M Param oct209 1758 Param Nov 2022 o param Aug2022 1.1TParam  Jan 2022 Calculus 3 0
Jun 2018 May 2020 Jul 2021 Dec 2021 S “(' ‘;[;
Journe Advanced Placement (AP) 53 =3
Contlnues 5 10
14 11
Med PaLM Z-Code++ pPaLM g B
ﬂlo bergGPT : = =
sgranpa.gm Mir ;:23 5408 Param 710M Param 3408 Param Medical Self- | 75 53
Dec 2022 Aug 2022 Apr 2022
Apr 2023 s Competitive Programming s Rating
DI'eX S Mohamadi, G Mujtaba, N Le, G Doretto, DA. Adjeroh, "ChatGPT in the Age of Generative Al and Large Language Models:A Concise Survey", arXiv preprint
UNIVERSITY arXiv:i2307.04251, pp.1-60, July 2023
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Outline of Presentation
|
- Introduction to Electronic Design Automation

« Machine learning techniques

- Case studies

- Standardizing ML for digital EDA

- Conclusions

& Drexel
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Case Studies

s I

Case Study 1: Prediction of Downstream Circuit Metrics in Physical Design
Timing Prediction, Interconnect Parasitic Prediction, Power Prediction

Case Study 2: Generation and Optimization of Circuits
Automated Placement, Clock Network Synthesis, Routing

Case Study 3: Transfer Learning Approaches

Case Study 4: Large Language Models in Physical Design

& Drexel
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Case Studies

Case Study 1: Prediction of Downstream Circuit Metrics in Physical Design
Timing Prediction, Interconnect Parasitic Prediction, Power Prediction

Case Study 2: Generation and Optimization of Circuits
Automated Placement, Clock Network Synthesis, Routing

Case Study 3: Transfer Learning Approaches

Case Study 4: Large Language Models in Physical Design

& Drexel
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Case Study 1: Prediction of Downstream Circuit Metrics in Physical Design

- Can machine learning be used to predict Functional Design
downstream performance metrics?

Using information available in initial phase X Logical Synthesis
predict the performance metric P in final phase Y

63

Floorplanning ‘

>

Estimated Static
Timing Analysis

- Can the predictions be used as an
early warning system? Design adjustments
- buffer insertion
- date sizing
- timing driven re-structuring Clock Network
gt Synthesis
! :
Roui Extracted Static
9 Timing Analysis
No v
Signoff
Meets Parasitic Prediction
power, performance, area "« Physical Verification
budget? Static Timing Analysis
Power, IR-drop Analysis
Yes i Tapeout

& Drexel
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Problem 1: Timing Profile Prediction

64

Objective

- Predict the timing profile (arrival time, slack, critical path...)
of the downstream stages of the physical design flow using
the current stage

Arrival
Time

Post routing

Post floorplan Post placement Post CTS
timing reports.

timing reports timing reports timing reports

Floorplanning }—»‘ Placement C‘%f/':‘mee‘::rk Routing

- Early and accurate prediction allows for pre-emptive timing
optimization, reducing the need for costly iterations

- Improves circuit performance by identifying critical paths

- Minimizes design and verification costs and reduces the gap
between estimated and actual timing

& Drexel
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information

- Problem Formulation
Problem Type: Regression
Initial phase: Post global routing
Final phase: Post detailed routing

design and repair timing

wire load model

Timing optimization: repaﬂ{ Parasitic estimation:

J

design and repair timing

*%
EM Timing optimization: repain]{ Parasitic estimation:
F

LUTE Steiner tree-baseﬂ

Timing optimization: repair Parasitic estimation: GR
L timing Steiner tree-based

congestion estimation, DRCs

Timing analysis: WNS, TNS, Parasitic estimation:
fully routed SPEF

)

& Drexel

Post Global Route to Detail Route Timing Prediction
| 65

- Predict post-detailed routing wire delays and wire slews using post-global routing

- Dataset

Circuits: Open-source designs
PDK: Open-source 45 nm and 130 nm

Toolset: OpenROAD

A Post-DR WNS
Design Tech | # Nets GRbased | DR-based
parasitics | parasitics
DYNAMIC ) )
NODE 45nm | 11598 | -0.26ns -0.26ns
AES 45nm | 16836 | -0.21ns -0.19ns
IBEX 45nm 17566 | -0.56ns -0.60ns
JPEG 45nm | 68247 | -0.25ns -0.17ns
RISCV32l | 130nm | 8150 -0.25ns -0.17ns
IBEX 130nm | 15307 | -0.24ns -0.11ns
AES 130nm | 15369 | -0.27ns -0.09ns
JPEG 130nm | 59573 | 0.24ns 0.02ns

V. A Chhabria, W. Jiang, A. B. Kahng and S. S. Sapatnekar, “From Global Route to Detailed Route: ML for Fast and Accurate Wire Parasitics and Timing
Prediction,” Proceedings of the ACM/IEEE Workshop on Machine Learning for CAD (MLCAD), pp. 7—14, Sept. 2022.

65

- Feature set (numeric)
HPWL
Number of sinks
Slew at the driving point
Congestion estimates
Rise and fall transitions
Source to sink length
Sources to sink Rand C

- Model Architecture:

Three XGBoost models (classical ML)
Source-sink wire delay prediction mode
Source-sink wire slew prediction model
ni-model parameter prediction model

& Drexel

Global routing

Post Global Route to Detail Route Timing Prediction

o

t
|4

{——
h:—ms nk2 =

ML-model-based timing prediction:
| | Net delay model > Wire delay |
;5, EL Net slew model > Wire slew |

—

) | m model predictor > CLR, G

Bbox

Pin

Congested region

Wire on M1 layer

Wire on M2 layer
Length of wire segment

Congestion of the grid

[ Detailed routing ]

V. A Chhabria, W. Jiang, A. B. Kahng and S. S. Sapatnekar, “From Global Route to Detailed Route: ML for Fast and Accurate Wire Parasitics and Timing
Prediction,” Proceedings of the ACM/IEEE Workshop on Machine Learning for CAD (MLCAD), pp. 714, Sept. 2022.
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- Feature set (numeric)
HPWL
Number of sinks
Slew at the driving point
Congestion estimates

Post Global Route to Detail Route Timing Prediction

Path Slack Comparison, 130nm Path Slack Comparison, 130nm

Rise and fall transitions s - 2
Source to sink length g
Sources to sink Rand C e
§ 0.0
- Model Architecture: =

= = — yox =
Aobased Delay 2 ML -based Detay +
s +
= *
¥ 1.0
8
@
=
Sos
&
=
g
S 00
=
& S iy
a L

Three XGBoost models (classical ML)
Source-sink wire delay prediction mode

Source-sink wire slew prediction model
ni-model parameter prediction model

& Drexel

0.0 0.5 1.0 0.0 0.5 1.0

Post-DR Path Slack [ns] Post-DR Path Slack [ns]

V. A Chhabria, W. Jiang, A. B. Kahng and S. S. Sapatnekar, “From Global Route to Detailed Route: ML for Fast and Accurate Wire Parasitics and Timing
Prediction,” Proceedings of the ACM/IEEE Workshop on Machine Learning for CAD (MLCAD), pp. 7—14, Sept. 2022.
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Arrival Time Prediction Framework

- Graph convolution based arrival time prediction
Initial Stage: Floorplan, Placement, CTS
Final Stage: Routing

Dataset Generation Graph Data Representation
A

& Drexel

CAD (MLCAD), pp. 127133, Sept. 2022.

Path Delay Prediction Flow

Functional Design — \— -
Design Constraints - B— —o o Y o Model Training
: e Stored Gi = _ Training Data > J— R
—7 Data I il Complete ¥
: - @2 o Ea—.
‘ Logical Synthesis - . ] I +——sPrediction
l 7 W Small
R A (B 3 = - - -
Netlist Graph s 7
Floorplanning Netlist T G2e v Medwuﬂ
(verilog, DEF) - Inputs, outputs and gates ¢~ 3 — —_—
represented by nodes G3 ¥ Large Evaluation Metrics
Placement ¥ _// ( MAPE, MAE, MSE
- Wires represented by G;‘ ¥ _—
edges \ Test Data —————» Model Evaluation
i Feature Importance
Clock Network T"?r’:rgn Rsf.g"" CaNEaner
Synthesis i A A A
— Timing Path 2 ¢ £
l Graph Gi Gi Gi 1
| Routng — - Sub-graphs A AR L Real-time Data Path Delay Path Delay
|— e
Parasitics extracted from netlist ¥ v ¥ Representation Prediction Model Prediction
(SPEF) G4) G4

P. Shrestha, S. Phatharodom, and |. Savidis, “Graph representation learning for gate arrival time prediction,” Proceedings of the ACM/IEEE Workshop on Machine Learning for

68
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Arrival Time Prediction Framework: Dataset Generation
]

- Generate physical design data for each design stage
Multiple data files generated: Verilog file, DEF file, timing reports, SPEF file

N ISCAS'89 benchmark circuits
Dataset Generation
— # of timing paths
Functional Design Dataset | . uit | Circuit size | Floorplan | Placement |~ CTS
Design Constraints e Group to routing | to routing | to routing
‘ S S tore: 527 16 540 540 540
—_— Data 5298 |98 1027 1565 1566
X — . 5344 136 1905 2310 2310
Logical Synthesis Dataset constraints and parameters 349|139 1885 2262 2262
T 1 5382 129 1601 2571 2571
! Parameters Values or ranges | # of Samples Small | gee [ 138 1195 1380 1380
F\%‘ Clock perinds (ns) 0.5, 1, 2, 5} 4 5400 136 1561 2644 2640
D — Netlist Aspect ratio 05,1, 15} 3 120 175 1175 1681 1681
(verilog, DEF) Max utilization 0.3,0.4,05,0.6,07} | 5 s4dd 149 1465 2687 2688
SO o W— Max skew (ns) 001-02] 1 random sample ::‘: f;; izgé ’Zgj 2221
Placement Max fanout 50 - 250] 1 random sample 915 e 3138 1167 1167
Max clock network capacitance (pF) | [0.05 - 0.3] 1 random sample 20— o8 260 7186 156
v Max latency (ns) 0-1] 1 random sample s832 304 1439 2221 2222
Clock Network Timing Report Total circuits per design 60 Medium | 838 | 355 2123 3284 3286
Synthesis from STA Overall circuits in dataset 60 " 25 = 1500 953 | 379 1796 3892 3892
s1196 434 438 2678 2684
51238 474 538 2795 2797
—_— 51423 586 2753 6268 6309
Roulmg 9234 2313 8088 12525 12517
Parasitics, 513207 3425 33174 47845 49092
s15850 | 4209 21432 54959 55758
{SPEF) Large 505 | 14287 112861 221529 223327
538417 10479 33786 88409 92555
538584 13216 48423 142829 147508

DreXel P. Shrestha, S. Phatharodom, and |. Savidis, “Graph representation learning for gate arrival time prediction,” Proceedings of the ACM/IEEE Workshop on Machine Learning for
UnivErsiTy  CAD(MLCAD), pp. 127133, Sept. 2022.
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Arrival Time Prediction Framework: Graph Representation
| 70
- Utilize netlist and timing path reports

Convert into directed graphs , T
Populate with node features

ble uy ouTPUT
WIRE
WEN GATE

T
*

 nl 2
Graph Data Representation
A_ 26
B—{ } o> o Y
Gt
&
=2 { 13 A4
L]
L o
Netlist Graph ® ¢ - I ) e
NEAvE Fig: Netlist graph representation Fig: Timing Path Graphs
G) G2«
- Inputs, outputs and gates -y 3/ .
—» represented by nodes G Node features of timing path graphs
¥
= G4 Feature Type Feature Size | Source
- Wires represented by - Clock period 1
edges Y Aspect ratio 1
Max utilization T, .
Setup features Max skew 1 esign pasameters
g Max fan-out 1
A A A
Timing Path 3 'y T Max clock network capacitance | 1
e Graph Gi) Gi Gi Max latency 1
2 I 3 Standard cell features 5‘“":““ cell / 859 | LEF/DEF file
- Sub-graphs & & & one hot encoding i .
extracted from netlist ¥ ¥ ¥ Structural features  |-Logiclevel 1] Caleulated from netlist
63 63 63 ;‘luml’l:erh of fanrmllll glates 1| graph representation
> tial phase gate delay I
Timing report features (et Bt ST 1 STA timing report
IC Compiler generated
Parasitic features Total interconnect capacitance | 1 | oo’

DreXel P. Shrestha, S. Phatharodom, and |. Savidis, “Graph representation learning for gate arrival time prediction,” Proceedings of the ACM/IEEE Workshop on Machine Learning for
UNIVERSITY CAD (MLCAD), pp. 127—133, Sept. 2022.
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Arrival Time Prediction Framework: Model Training

- Graph convolutional layers for graph embedding

- Feed forward layers for network depth

GCN Layers

Linear Layers

.

: L0 Relu || ReLu
Timing Path o o [0 Final Phase
Input Graphs o R4 o p=4 Path Delay Prediction
‘ < ©
. 16x8
32x16
Deep GCN Network
GON Layers Linear Layers
o] °
4 4 Iniial Phase Path Delay
g B ’
< 0 e I3
Timing Path ( o Bl o al Phass
Input Graphs o =N o Path Delay Prediction
3 (] (] >
4 5
‘(-\’ \—" - & 168
o ol ~ 32x16

nx64  64x64

Wide and Deep GCN Network

64x32

CAD (MLCADY), pp. 127-133, Sept. 2022.

Cc;npgte

Path Delay Prediction Flow

Training Data

Model Training

(* . ——»Prediction

Test Data

Real-time Data
Representation

—— Model Evaluation

l | Evaluation Metrics
MAPE, MAE, MSE

‘ Feature Importance

Path Delay
Prediction

! Path Delay
| Prediction Model

P. Shrestha, S. Phatharodom, and I. Savidis, “Graph representation learning for gate arrival time prediction,” Proceedings of the ACM/IEEE Workshop on Machine Learning for
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Results

- Wide and deep GCN

~
N

MAPE and MAE comparisons

Outperforms the baseline for all

scenarios except for CTS to routing

timing estimate
Outperforms the baseline for CTS to

routing timing estimate of small and

medium circuits

Outperforms linear regression except
for floorplan to routing timing estimate
of large circuits

- Due to minimal changes in the
timing paths after CTS, CTS to
routing results in the best baseline
performance

Hard to improve on result provided by
tool post-CTS

CAD (MLCAD), pp. 127133, Sept. 2022.

Dataset Group Scenario Baseline Deep GCN Wide and Deep GCN LR
MAPE | MAE | MAPE | MAE | MAPE MAE MAPE | MAE
Floorplan to Routing | 86.23 | 17.34 | 161.61 | 8.56 | 29.91 | 7.22 32 9.17
Complete Placement to Routing | 49.41 14.77 | 47.34 15.53 | 39.94 10.51 40.81 13.88
CTS to Routing 2.8 1.84 15.87 7.2 3.56 1.79 4.32 1.99
Floorplan to Routing | 7.25 194 [ 1335 [3.07 [428 1.06 4.37 112
Small Placement to Routing | 2.71 0.67 19.08 5 1.77 0.38 1.98 0.47
CTS to Routing 2.69 0.66 23 6.55 1.8 0.39 2 0.48
Floorplan to Routing | 6.46 268 [3535 |9.81 [642 1.6 6.79 1.69
Medium Placement to Routing | 3.97 1.82 27.48 13.67 | 3.34 1.15 3.97 1.27
CTS to Routing 3.9 1.8 22.2 7.86 2.35 1.12 2.79 1.22
Floorplan to Routing | 86.23 | 17.34 [ 26.6 816 | 3206 [ 742 3155 | 9.11
Large Placement to Routing | 49.41 14.77 | 33.31 11.43 | 40.61 10.36 41.74 14.01
CTS to Routing 2.8 1.84 16.83 7.97 3.6 1.83 3.75 1.95

Wide and Deep GCN vs Baseline

Wide and Deep GCN vs LR

|
|

MAPE Improvement (in %)

- small
- edium
= Large

= Complete

- small
- vedium
= Large

= Complete

i

Floorplan to Routing

Placement to Routing TS to Routing

Floarplan fo Routing

Placement to Routing €75 to Routing

P. Shrestha, S. Phatharodom, and |. Savidis, “Graph representation learning for gate arrival time prediction,” Proceedings of the ACM/IEEE Workshop on Machine Learning for
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Results

Wide and deep GCN

Outperforms the baseline for all
scenarios except for CTS to routing
timing estimate

Outperforms the baseline for CTS to
routing timing estimate of small and
medium circuits

Outperforms linear regression except

for floorplan to routing timing estimate

of large circuits

Due to minimal changes in the
timing paths after CTS, CTS to

routing results in the best baseline

performance

Hard to improve on result provided by

tool post-CTS

MAPE and MAE comparisons

Dataset Group Scenario Baseline Deep GCN Wide and Deep GCN LR
MAPE | MAE | MAPE | MAE|| MAPE MAE APE | MAE
Floorplan to Routing || 86.23 | 17.34 [[161.61 | 8.56 || 29.91 | 7.22 2 9.17
Complete Placement to Routing || 49.41 14.77 || 47.34 15.53 || 39.94 10.51 | X 13.88
CTS to Routing 2.8 1.84 15.87 7.2 3.56 1.79 H.32 1.99
Floorplan to Routing || 7.25 194 1335 | 307 || 4.28 1.06 .37 112
Small Placement to Routing || 2.71 067 1908 |5 1.77 038 98 0.47
CTS to Routing 2.69 0.66 23 6.55 1.8 0.39 P 0.48
Floorplan to Routing || 6.46 2.68 35.35 9.81 6.42 1.6 .79 1.69
Medium Placement to Routing || 3.97 182 ||2748 [ 13.67]] 334 115 97 127
CTS to Routing 3.9 18 222 7.86 || 235 112 p.79 1.22
Floorplan to Routing || 86.23 1734 §26.6 8.16 32.06 7.42 1.55 9.11
Large Placement to Routing || 49.41 1477 3331 | 11.43[ 4061 [ 10.36 174 | 1401
CTS to Routing 2.8 184 |[1683 [ 7.97 |[36 1.83 .75 1.95
Wide and Deep GCN vs Baseline Wide and Deep GCN vs LR
- small - small
60 - edium - edium
- Large - Large

m{
o

MAPE Improvement (in %)

== Complete

-u_i

= Complete

d

Floorplan to Routing Placement to Routing

cTsto

Routing

Floorplan to Routing

Placement to Routing

TS to Routing

~

P. Shrestha, S. Phatharodom, and I. Savidis, “Graph representation learning for gate arrival time prediction,” Proceedings of the ACM/IEEE Workshop on Machine Learning for

Qﬁ’ prexe T\ CAD (MLCAD), pp. 127-133, Sept. 2022.
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Results
74
Wide and deep GCN MAPE and MAE comparisons
Outperforms the baseline for all DatasetGrowp | Seemario |-y iATE | AE[| MAPE | MAF | WAPE | SAE
3 1 Floorplan to Routing 86.23 17.34 161.61 8.56 29.91 7.22 2 9.17
Scenarlos e)(ceI)t for CTS to routlng Complete Placel"’nent to Routing || 4941 14, 47.34 155311 3994 | 1051 K0.81 13.88
tlmmg estimate CTS to Routing 2.8 184 |1587 |72 |[ 356 1.79 .32 1.99
" Fllonrplan to Routing 7.25 194 13.35 3.07 4.28 1.06 k.37 112
: Smal Placement to Routing || 2.71 0.67 19.08 5 1.77 0.38 98 0.47
Outperforms the basellne for CTS to CTS to Routing ¢ 2.69 0.66 23 6.55 1.8 0.39 3 0.48
3 : : : Floorplan to Routing 6.46 2.68 35.35 9.81 6.42 1.6 .79 1.69
routing timing estimate of small and Metum [ Phcementts R 5971w [z [Toer{ s T1Ts
med1um circuits CTS to Routing 3.9 18 222 786 || 235 112 b.79 122
Floorplan to Routing 86.23 17.34 | 26.6 8.16 32.06 7.42 1.55 9.11
. . Large Placement to Routing L4941 14 3331 L 114314 4061 10.36 1.74 14.01
Outperforms linear regression except CTS to Routing 28 184 | 1683 | 797 || 36 183 75 | 195
for floorplan to routing timing estimate Wi and Deep GCN vs Baselne Wi and Deep GON vs 1R
of large circuits ol E = oo = imion
I = =
Due to minimal changes in the z I I i
timing paths after CTS, CTS to L
routing results in the best baseline ll - I B ' ij
2, - I—
performance
Hard to improve on result provided by
tool post-CTS
DI.e 1 P. Shrestha, S. Phatharodom, and |. Savidis, “Graph representation learning for gate arrival time prediction,” Proceedings of the ACM/IEEE Workshop on Machine Learning for
TR IVETST Ty  CAD (MLCAD), pp. 127-133, Sept. 2022.
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Results

e
- Wide and deep GCN MAPE and MAE comparisons
Outperforms the baseline for all DatasetGroup | Seemario | boserine | Deep GON 1 Wide andDeep GCNJL IR
: 4 Floorplan to Routin, 86.23 17.34 161.61 8.56 29.91 7.22 9.17
Scenarlos except for CTS to rOUtlng Complete Placcpmznt mR(:ulingg 49.41 14.77 | 47.34 15.53 | 39.94 10.51 13.88
tlIl’]ll’lg estimate CTS to Routing 238 184 | 1587 |72 3.56 179 1.99
F|nnrplan to Routing 7.25 1.94 13.35 3.07 4.28 1.06 112
: Small Placement to Routin, 271 0.67 19.08 5 177 0.38 0.47
Outperforms the basellne for CTS to CTS to Routing 5 2.69 0.66 23 6.55 1.8 0.39 0.48
: : : . Floorplan to Routin, 6.46 2.68 35.35 9.81 6.42 1.6 1.69
routlng tlrmng eStlmate Of Sma‘ll and Medium Pla:epm:m to };:utingg 3.97 1.82 27.48 13.67 | 3.34 115 1.27
medlum Circuits CTS to Routing 3.9 18 222 786 | 235 1.12 1.22
Floorplan to Routing | 86.23 17.34 | 26.6 8.16 32.06 7.42 9.11
. . Large Placement to Routing | 49.41 14.77 | 33.31 11.43 | 40.61 10.36 14.01
Outperforms linear regression except CTS to Routing 238 184 | 1683 | 797 |36 183 195
for floorplan to routing timing estimate e and Deep GCN vs Baseine Vi and Deep GO va R
of large circuits o - - -
I == -
- Due to minimal changes in the I I I i
timing paths after CTS, CTS to P
routing results in the best baseline ll - I L ' ij
N I —
performance I

Hard to improve on result provided by
tool post-CTS il

Floorplan to Routing Placement to Routing CTstoRouting  Floorplan to Routing Placement to Routing TS to Routing

DI.e 1 P. Shrestha, S. Phatharodom, and I. Savidis, “Graph representation learning for gate arrival time prediction,” Proceedings of the ACM/IEEE Workshop on Machine Learning for
UNIVERSITY  CAD(MLCAD), pp. 127-133, Sept. 2022.
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Problem 2: Interconnect Parasitic Impedance Prediction

- Interconnect impedance (R, L, C) are extracted after routing : :
o . ) Functional Design
Big impact on circuit performance

Need estimation of interconnect impedance at pre-routing design stages

- Early impedance used for estimation of circuit properties

Reduce error between intermediate stages and final stage simulation results ——— Estimated
of other circuit performance parameters Parasitics
signal integrit;
gn gty Clock Network
power profile Synthesis predet
timing profile 1
gain Routing EX{rgcior
Parasitics

bandwidth

Guide placement and routing

- Analytical models are not accurate enough
Solution: apply ML

& Drexel

76

37



A Machine Learning Based Parasitic Extraction Tool

- Algorithm: regression

- Target circuit parameters for prediction: resistance, capacitance to ground, coupling,
crossover, and cross-under capacitance of a net
- Training data is generated from Cadence Innovus with design of experiment (DOE)
Not exclusively for analog but provides physical modeling of interconnect capacitances
- Regression function is fixed

. . Calibration Flow Inf Fl
Only fitting regression parameters on data e Sew

Example: coupling capacitance expression !!
Cc = C/S +d- loverlap +e- loverlap/s + f

Training Data Generator

PEX Tool

Inflexible to model interconnects at advanced technologies
- No results reported ——

ﬁ G. Pradipta, V. A. Chhabria, and S. S. Sapatnekar, "A Machine Learning Based Parasitic Extraction Tool," Workshop on Open-Source EDA Technology (WOSET), pp. 1-3, Nov.
UNIV qulTY 2019
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ParaGraph: Layout Parasitics and Device Parameter Prediction with GNNs

- Graph representation of a circuit vdd
Heterogeneous graph: devices and nets both as graph nodes
Multiple sub-models for different capacitance ranges

- Transistor features: v N
Gate poly length
Number of fingers —> net>transistory,,  ——p net-> transistory,,
====P  Transistor,,,, - net ====P  Transi S
Number Of ﬁns gat ransistor,,;, > net
M 1 . 1 O Net node Transistor node
ultiplier
h;“ hél)
Ry \, hi
o 4 se |
¥ & TR P
(O] § B
(D T Q> ool ) y
e "
t ° h® >—> —
4
% Concatenate
AP hil)
elf
® " - /H
h
~———p Edge Type 1 5
———5 Edge Type 2 »m—’
D H. Ren, G. F. Kokai, W. ). Turner and T. Ku. “ParaGraph: Layout Parasitics And Device Parameter Prediction Using Graph Neural Networks,” Proceedings of the
UN lj? g{{. TY ACMIIEEE Design Automation Conference (DAC), pp. |6, June 2020.
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ParaGraph: Layout Parasitics and Device Parameter Prediction with GNNs

- Simulation errors between pre-layout predictions and post-layout extracted values on 67
circuit metrics in the testing circuits

Error Layout w/o  Designer’s  Prediction w/  Prediction w/

Range parasitics Estimation XGB ParaGraph

< 10% 4 6 17 44
10%-20% 0 17 14 10
20%-30% 5 18 4 8
30%-40% 35 2 7 4
40%-50% 14 6 9 1

> 50% 9 18 16 0

Mean 37.75% >100% 32.14% 9.60%

Geometric Mean 29.01% 43.57% 15.46% 4.00%

- GCN-based model achieves an average prediction R2 of 0.772 (110% better than
XGBoost)

- Average simulation errors from over 100% with designer’s estimation to less than 10%
(ﬁ,DreXel H. Ren, G. F. Kokai, W. ). Turner and T. Ku. “ParaGraph: Layout Parasitics And Device Parameter Prediction Using Graph Neural Networks,” Proceedings of the

UNIVERSITY ACMIIEEE Design Automation Conference (DAC), pp. |6, June 2020.
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Digital Parasitic Prediction Framework

Dataset Generation Graph Data Representation

Functional Design —
Design Constraints

Logical Synthesis =

e
Floorplanning ‘ =
Netlist S

' Al C D“>0_
i il L¢> L

Interconnect Capacitance Prediction Flow
Interconnect Graph

- Interconnect sections represented by nodes
- Connection between interconnect sections
represented as edges

tored
Data

“Dataset

Model Training
Training Data R
=,

)
(A
NG
uoolpaig

I

Clock Network

Synthesis A TestData | ————» Model Evaluation | EValuation Metics
' Parasiti B ‘ ‘
Routing (SPEF) e 1
A D)
" ) | \
Signoff (O T N\ Real-time Data Interconnect Parasitic inferconnect
( 3 _— o — Capacitance
L y Representation Prediction Model -
B Prediction

- Objective
- Train GNN models for estimation of parasitic values on interconnect segments
- Predict post routing capacitance using post placement circuit features

ﬁ:DreXel P. Shrestha and . Savidis, "Graph Representation Learning for Parasitic Impedance Prediction of the Interconnect” Proceedings of the IEEE International Symposium on Circuits

UNivErsiTy  and Systems (ISCAS), pp. 1-5, May 2023.
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Dataset Generation

l Floorplanning ‘

Netlist
Clock Network
Synthesis
J'_ Parasitics

Signoff
Parastic redicion
Physical Veriicaton

Statc Timing Analysis
Power, IR.drop Anaysis

Graph Data Representation

Interconnect Graph

- Interconnect sections represented by nodes
|, - Connection between interconnect sections
represented as edges

& Drexel

Parasitic Prediction Framework: Dataset Generation

Interconnect Capacitance Prediction Flow

Test

Training Data

Model Training

uonolpaid

Data

N Real-time Data
/ Representation

| E—

L

Evaluation Metrics
Model Evaluation 4-{ MAPE. MAE

——

Interconnect Parasitic
Prediction Model

Interconnect

— Capacitance

Prediction

- Generate physical design data for each design stage
Multiple data files generated: Verilog file, DEF file, SPEF file

P. Shrestha and |. Savidis, "Graph Representation Learning for Parasitic Impedance Prediction of the Interconnect” Proceedings of the IEEE International Symposium on Circuits
and Systems (ISCAS), pp. 1-5, May 2023.
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& Drexel

Graph Data Representation
Interconnect Graph
- Interconnect sections represented by nodes

- Connection between interconnect sections
represented as edges

- Utilize netlist and SPEF reports
Convert into interconnect spatial graphs
Populate with node features

y coordinate (um)

Parasitic Prediction Framework: Graph Representation

y coordinate (um)

82

150

75 200 225 250 RIS 100 BIS 350 s %0 s 0
x coordinate (um) x coordinate (um)
Feature Type Feature Source
Post placement Tnterconnect segment A—
parasitics features | capacitance SPEF file
Structural features | _T0lerconnect segment Tevel | Calculated from netlist
Tnterconnect segment length | _grapi
S Tnterconnect segment S
Spatial features midpont (x, y) LEF/DEF file
Conmaestion featarcs | Pl density Calculated from placed netlist
ges © Net density (DEF file) and SPEF file

P. Shrestha and I. Savidis, "Graph Representation Learning for Parasitic Impedance Prediction of the Interconnect” Proceedings of the IEEE International Symposium on Circuits
and Systems (ISCAS), pp. 1-5, May 2023.
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Parasitic Prediction Framework: Graph Representation

83
Interconnect Interconnect Capacitance Prediction Flow
graph
SGON Layers | ) ninputs, 16 outputs Model Training
/ el Post Placement Total Interconnect Capacitance =
Dataset P 3
o ) 17 inputs, 16 outputs A %
) g
) 16 inputs, 16 outputs
) 16 inputs, 16 outputs
Linear Layers.
) 16 inputs, 16 outputs
Test Data L5 Model Evaluation | Evﬂ‘fgg"mfgm
16 inputs, 16 outputs l
16 inputs, 1 output N\ I — - o Interconnect
Post Routing Total Interconnect Gapacitance R:;r'e 'S"e‘;a‘i) : | N ngrrce?jm;cn Mf;r:eslw i |, Capacitance
1 P d t.
SGCN Network v rediction
- Utilize Spatial GCN network model
Train 6 models where for each model one of the circuits is for test and the rest form the train set
Use mean square error (MSE) as loss optimization function
(ﬁ,DI'eX P. Shrestha and |. Savidis, "Graph Representation Learning for Parasitic Impedance Prediction of the Interconnect" Proceedings of the IEEE International Symposium on Circuits
UNIVERSITY  and Systems (ISCAS), pp. I-5, May 2023.
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Results

- Considering total error

Model outperforms the baseline on average but
not for all circuit scenarios

- Considering top 1% worse errors

Model outperforms the baseline for all scenarios
consistently

- Average improvements
MAE: 5.33%
Top 1% MAE: 14.31%
MAPE: 23.39%
Top 1% MAPE: 47.43%

- R? across all models is consistent (> 0.95)

Baseline vs SGCN: MAE

Baseline vs SGCN: MAPE

§

E

Baseline vs SGCN: top 1% MAPE

15

D P. Shrestha and I. Savidis, "Graph Representation Learning for Parasitic Impedance Prediction of the Interconnect” Proceedings of the IEEE International Symposium on Circuits
TCX
UNivErsiTy  and Systems (ISCAS), pp. 1-5, May 2023.
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S

- Considering MAE

Proposed model underperforms for smaller

capacitances and outperforms for larger capacitances

- Considering MAPE
Proposed model outperforms the baseline consistently

- Large proportion of baseline error comes

Baseline vs SGCN: MAE

Results: interconnects distributed by capacitance range

Baseline vs SGCN: MAPE

eline vs SGCN. top 1% MAE

cline vs SGON. top 1% MAPE

from nets with larger capacitance

Model improving the MAE for larger nets is

UNIVERSITY

desirable
Capacitance . Proposed
Range (fF) No. of nets | Baseline Model Improvement
0 to 0.1 403 28.43 130.51 -359.09%
01to1 48533 6,808.11 6,503.50 4.47%
1to 10 53104 18,908.16 | 17,504.80 | 7.42%
10 and
beyond 4873 10,197.49 | 8,591.97 15.74%
Total 106913 35,942.19 | 32,730.77 | 8.93%
Drexel

MAE mprovement *

MAPE Improvemen t

w0

=
—=op 1

L

oLy

10,1

P. Shrestha and |. Savidis, "Graph Representation Learning for Parasitic Impedance Prediction of the Interconnect” Proceedings of the IEEE International Symposium on Circuits
and Systems (ISCAS), pp. 1-5, May 2023.
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Predicted ©°

Schematic 1

Post-placement level

evel

as edge weights

- Apply edge-weighted GNNs for
estimation of interconnect capacitance

- Post-placement model leverages
coordinates of placed devices
Euclidean distance between devices used

1.0

0.8

0.4
. ce
3
0.2
.
0.0
0.4 0.6 0.8 1.0
Actual
& Drexel
UNIVERSITY

Analog Parasitic Prediction Framework

Heterogeneous node types:

* Transistor
* Net

—_—
e
 —
—

Heterogeneous edge types:

source-to-net
drain-to-net
gate-to-net
distance
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Problem 3: Total Power Prediction
@ ]

- Early power prediction influences placement and routing decisions

- Crucial for optimizing energy efficiency and ensuring thermal management in electronic devices

- Key factors influencing power consumption
Static Power: Power consumed when the device is inactive but powered on

Dynamic Power: Power consumed in response to circuit activity
Mainly due to charging and discharging of capacitors

& Drexel
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GNN + LSTM based Total Power Prediction
] 88

- Predict total power at the end of physical design flow in early physical design (PD) stages

- Dataset
Circuits:
Two commercial CPU designs
Five OpenCore circuits

- Problem Formulation
Problem Type: Regression
Initial phase: Post placement

Final phase: Post detailed routing
_____________________________________________ PDK: TSMC 28nm technology
g i”" "ced prepone coarse_density | | global_effort | . .
5| | codpostpone i buffer aware ! | crosstalk_driven | Toolset: Synopsys DC Compiler, ICC2 Compiler
jfl . is_tming_driven ;; tns_driven ;! drv_driven |
| ipoverdiventit Cpowerofr. bi Wimvaefr | Parameters: 19 tool parameters influencing
el various physical design stages

v v v
| t CTS ti
m_> Pacamen £2lig Design Name | #Nets | #FFs | # Cells [ Usage

w S w S w & w CPU-A 206,224 | 22,366 | 202,791
cﬁ/ Cf/ o‘\[ ECG 85,058 | 14,018 | 84,127 -
training

VGA 56,279 | 17,054 | 56,194
- @ ,,,,,, ’@—’ ______ @ it JPEG 231,934 | 37,642 | 219,064
= {0 global routing CPU-B | 542391 | 47,552 [ 597,085
ke pover power power AES 90,905 | 10,688 | 113,168 | testing
E LDPC 42,018 | 2,048 | 39,377

termination check ? YES : NO

Drexel Y.-C. Lu, W.-T. Chan, V. Khandelwal, and S. K. Lim, “Driving Early Physical Synthesis Exploration through End-of-Flow Total Power Prediction,” Proceedings of the ACM/IEEE
UNIVERSITY Workshop on Machine Learning for CAD (MLCAD), pp. 97-102, Sept. 2022
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GNN + LSTM based Total Power Prediction

- Feature set
Minimum, maximum slack
Maximum transition of input/output pins
Switching power of driving net

| ]

total power prediction

initial initial initial route route route route
place drc opt clock auto opt 1 opt2
«

—— —~—
placement CTS routing

Workshop on Machine Learning for CAD (MLCAD), pp. 97—102, Sept. 2022

Cell power (switching, internal, leakage) H NN layer 3 (1 neuron) §
H NN layer 2 (32 neurons) {
- Model Architecture NN layer 1 (64 neurons) |
GNN for netlist representation learning -.j [ LSTM (128 hidden dim.) |
Long Short Term Memory (LSTM) for sequential modeling of design stages R
L )
ICC2 params graph vector est. power
oam) [l °2 am) Rl i)
ced.prepone clk_routing_effort
ced.postpone place_effort P t
@ @ ﬁ @ ﬁ @ ﬁ @ low_power_effort congestion_effort 3 ;
timing_effort 2 | layer 3 (128 neurons) 5§~
: routing @ ®a
is_timing_driven congestion_effort S H layer 2 (128 neurons) £
is_power_driven tns_driven s %93
concatenate layer: GNN vector (128 dim.) + tool parameters (19 dim.) + power estimation (1 dim.) it PO g#gg 5 | layer 1 (128 neurons) °E
buffer_aware Crosstalk_driven 3 L 23
graph neural network layers ( universal graph encoding ) dndikven . % t=01 t=71% 2~
©
Q

LN | end-of-flow t@“" =
opt3 power

A

T ’ initial place route auto

(8 sequential stages)

ﬁDre 1 Y.-C. Ly, W.-T. Chan, V. Khandelwal, and S. K. Lim, “Driving Early Physical Synthesis Exploration through End-of-Flow Total Power Prediction,” Proceedings of the ACM/IEEE
UNIVERSITY
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Long Short Term Memory (LSTM)

- Recurrent Neural Network (RNN)
Encodes sequential data into vector representation
Does not capture long term dependencies

- LSTM extends RNN
Incorporates long-term memory components to
prioritize retaining certain hidden states over others.
Special units (memory cells) maintain state over time

Forget Gate:
Decides what information to discard from the cell state.

Input Gate:
Determines which values from the input to update the cell state.

Output Gate:
Controls the output and the next hidden state.

& Drexel

Yo Y1 Y2

f f f

Yn
e
—_—

Sgt. Pepper's Lonely Band

Sequential Neural Network

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short Term Memory (LSTM)

91

- Recurrent Neural Network (RNN)

Encodes sequential data into vector representation

—~®
S)
—~@©

Does not capture long term dependencies A o A
. LSTM extends RNN © ® ©
Incorporates long-term memory components to RNN
prioritize retaining certain hidden states over others. ® ® @)
Special units (memory cells) maintain state over time T\ T\ 1
Forget Gate: )Y I "
Decides what information to discard from the cell state. A A
. (9] (o] (&) [g]
Input Gate: > N

Output Gate:
Controls the output and the next hidden state.

& Drexel

Determines which values from the input to update the cell state.

©

(I

Neural Network

Layer

®

@)

Pointwise
Operation

LSTM

|
©

— > <]

Vector
Transfer

Concatenate

Copy

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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GNN + LSTM based Total Power Prediction

CC denotes the Pearson correlation coefficient.
NRMSE denotes the accuracy of the proposed model

- Feature set

All metrics are computed against [CC2 power values.

Minimum, maximum slack

& Drexel

Workshop on Machine Learning for CAD (MLCAD), pp. 97-102, Sept. 2022

PD stage

unseen

NRMSE

Maximum transition of input/output pins o = o liccace | ource
(avg time) || design (%)
Switching power of driving net initial place ||-PUB| 28 | o4z 0.6
. . . 3% AES 24.7 0.26 05
Cell power (switching, internal, leakage) IDPC | 212 | 018 037
initial drc CPU-B 22.1 0.43 ).58
3 e AES 286 0.25 0.52
- Model Architecture (4) o T a2
GNN for netlist representation learning initial opt CX:;B ;2? ‘;:’;ﬁ —
. . . %) S E ‘
LSTM for sequential modeling of design stages IDPC | 129 | 031 066
final place CPU-B 11.2 045 0.81
o |[CAES | o7 035 086
8 IDPC | 92 032 072
baild clock [ PUB ] 82 0.41 089
: “‘;‘ o |[CABS 71 047 0.9
LDPC 8.7 0.43 0.88
ate clock JI.CPUB] 59 042 0.94
route clock | AES X 076 092
A IDPC | 58 074 093
lock CPU-B 5.2 0.65 0.95
cocton [ ams 64 096 096
LDPC 39 0.92 0.95
: t CPU-B 4.1 0.75 0.98
B | ARS 53 0.96 097
LDPC 3.7 0.94 0.97

Y.-C. Lu, W--T. Chan, V. Khandelwal, and S. K. Lim, “Driving Early Physical Synthesis Exploration through End-of-Flow Total Power Prediction,” Proceedings of the ACM/IEEE
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Case Studies
@ =]

Case Study 1: Prediction of Downstream Circuit Metrics in Physical Design
Timing Prediction, Interconnect Parasitic Prediction, Power Prediction

Case Study 2: Generation and Optimization of Circuits
Automated Placement, Clock Network Synthesis, Routing

Case Study 3: Transfer learning approaches

Case Study 4: Large Language Models in Physical Design

& Drexel
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Case Study 2: Design Optimization and Generation
| 94
- Design Optimization

Given an initial circuit component state S, can we achieve a final circuit component state S'to
improve the performance metric P of the said circuit component state?

- Generation vs Optimization
Can previous-stage circuit component state act as the initial stage for design generation?

- ML for design optimization and generation
Reinforcement learning
Generative learning

& Drexel
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Placement, CTS, and Routing for Digital Design
L}

- Primary Objectives
Performance Optimization: Tailoring chip layout to maximize circuit performance
Power and Area Efficiency: Reducing power consumption and minimizing chip area, often through wirelength
minimization
Design Implementation: Ensuring the design is reliable, scalable, and completed within project timelines

- Design Rule Constraints

Adhering to stringent design rules that govern the placement of circuit elements and routing to ensure
manufacturability and functional integrity of the chip

- Additional Objectives
Low congestion
Thermal Management
Noise Reduction

& Drexel
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Digital Placement Optimization via PPA-Directed Graph Clustering

- Optimize power, performance, and area (PPA) during circuit placement

- Graph based cell clustering GNN clustering
Provide clusters as inputs to commercial placers U graph | as soft
& — constraints
: . ifeatures!
- Use post placement congestion, timing, R
and power to optimize cluster *30 min
P — PPA as ML
+ timing | |oss functions
—»  power = (unsupervised)
analysis 1 congestion !
final PPA
*runtime measured on block1 (1.6M cells @ 5nm technology) (our goal)
ﬁDre Y.-C. Ly, T. Yang, S. K. Lim, and H. Ren, "Placement optimization via PPA-directed graph clustering", Proceedings of the ACM/IEEE Workshop on Machine Learning for CAD
univeErsiTy  (MLCAD), pp. |6, Sept. 2022
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Netlist Representation
Utilized netlist graphs of circuits

Post-placement node-specific features with physical, timing, power attributes
"Skip-connections" to aid GNN model in capturing timing-related attributes

Type # dim. | Description
name embeddings | 16 hierarchical name encoded by S-BERT [11]
memory affinity M shortest logic distance to each memory

worst output slack
worst output slew
worst input slew
largest activity
locations

worst slack value at output pin

maximum transition at output pin
maximum transition among input pin(s)
largest switching activity value among nets
(x.y) location of initial placement

1f =] = =] =

transformed as GNN input

(ﬁ,DI’ Y.-C. Ly, T. Yang, S. K. Lim, and H. Ren, "Placement optimization via PPA-directed graph clustering", Proceedings of the ACM/IEEE Workshop on Machine Learning for CAD

anvgs 1Ty  (MLCAD), pp. -6, Sept. 2022
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Deep Graph Clustering
|

Generate graph embeddings using GraphSAGE
Obtain initial cluster centroids/clustering assignments using K-means

input graph clustering loss | to refine

ager 142 learned probability min KL(P1|Q) ass‘g"me"'s—l i ’“’:".’;’05??:’;2;6’5’ .
S layer t+1 embeddings matrix Q tospreadout hd " [Cl:#of clusters |
[0.1,0. ] max entropy( @'H) | congested cells > ! P target distribution |
G= (V E) . & timing Igss to minimize 4’3 : HKL: KL D\\{‘ergence :
initial features 9,00, ..., 0.1] min Q (1-Q) *Adj’ | cut-size of paths % ) con_g_es ion score‘ i
VI 32 Vixicl power loss |toaggregate ' 1 4 smcnrtlgrcfr:gp:thusvf; Jl
node represetation min entropy( Q'S ) | high-activity nets | N(v): neighbors of v |
learning similarity loss P— Lo sigmoid function 3
MxIF T -3 10g(0(%,)) -3 109(0(-¥%) long wires — | Land: 2 ndom sampling
gradient descent update e
ﬁDre Y.-C. Ly, T. Yang, S. K. Lim, and H. Ren, "Placement optimization via PPA-directed graph clustering", Proceedings of the ACM/IEEE Workshop on Machine Learning for CAD
university _ (MLCAD), pp. |6, Sept. 2022
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Deep Graph Clustering
I

- Generate graph embeddings using GraphSAGE

- Obtain initial cluster centroids/clustering assignments using K-means

input graph clustering loss | to refine .
putgrep layer t+2 . minKL(P|| Q) [|assignments | ______ N p}qtjqqg ,,,,,,

layer t+ Iearne_d proba_blllty ! |F|: # of features |

Jayert embeddings matrix Q ) congestion I?:s tco iprez:ddou(” . ! |C|:#ofclusters |

4,02, max enfropy( @ ongested cells 2 | P:target distribution |

G=(V.E) > & timing loss | to minimize B 3 KL: KL Divergence 3
initi .9, min Q (1-Q)"*Adj’ | cut-size of paths = . H:congestion score |
Initel features / : S | | Adj: critical paths adj |
power \os§ toaggregate 2 | S: switching activity |

node represetation min entropy( Q'S ) | high-activity nets | N(v): neighbors of v |
learning

| o sigmoid function |
| rand: random sampling

MxIA
gradient descent update

ﬁDre 1 Y.-C. Ly, T. Yang, S. K. Lim, and H. Ren, "Placement optimization via PPA-directed graph clustering", Proceedings of the ACM/IEEE Workshop on Machine Learning for CAD
UnIVERSsITyY  (MLCAD), pp. -6, Sept. 2022
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Deep Graph Clustering
]
- Generate graph embeddings using GraphSAGE
- Obtain initial cluster centroids/clustering assignments using K-means
- Optimize the cluster centroids/clustering assignments by minimizing loss functions
Clustering loss: Kullback-Leibler divergence
Congestion loss: maximizing Shannon entropy
Power loss: minimizing entropy of maximum switching activities
Timing loss: optimizing clustering of cells on critical timing paths
Similarity loss: minimize embedding distance in high dimensions

input graph clustering loss | to refine .
put grap m » minKL(P||Q) |assignments™ | | ._____[ notslons . .
. ; learned frobability 0 |F|: # of features |
+ p " : i
agert embeddings atrix Q congestion loss | to spread out ' C|: # of clust I
layert 00 i t QH) | congested cells — e i _[Cl:#of clusters
,02, max entropy( Q'H) 9 H | P: target distribution |
G=(VE) > : timing loss | to minimize -3 i KL:KL Divergence |
initi min Q (1-Q)"*Adj’ | cut-size of paths — ~ =—]| | H : congestion score |
initial features / =) 1 Adj’: critical paths adj |
o Mx|c| powerloss |toaggregate @ | S: switching activity |

node represetation min entropy( Q'S ) | high-activity nets | N(v): neighbors of v |

learning similarity loss to prevent : o: sigmoid function 3
MxIA - |3 log(0(Y}y.) -3 10g(0(¥:.)| long wires rand: random sampling
gradient descent update 2N rorand

ﬁDre Y.-C. Ly, T. Yang, S. K. Lim, and H. Ren, "Placement optimization via PPA-directed graph clustering", Proceedings of the ACM/IEEE Workshop on Machine Learning for CAD
univeErsiTy  (MLCAD), pp. |6, Sept. 2022
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Deep Graph Clustering: Results
|
- PPA improvements for all benchmark circuits
2.2% improvement in power consumption
26% improvement in WNS
1.4% improvement in wirelength

- Lower number of DRC violations design, designl, design2, design3, designd,
# of clusters |C|=10 |C|=11 |C|=11 |C|=10
PD stage post- post- post- post- post- post- post- post-
place route place route place route place route
WNS (ps) 48 -88 13 229 4 20 5 22
JUPT. TNS (ns) -41.45 | -2.89 | -0.084 | -3.82 | -0.019 | -2.24 | -0.042 | -2.65
industrial # of violations | 3306 574 23 1440 10 996 16 1221
PD flow total WL 1 1 1 1 1 1 1 1
(no clustering) clock WL - ! - ! - ! - !
total power 1 1 1 1 1 1 1 1
clock power - 1 - 1 - 1 - 1
WNS (ps) -39 -9 -4 =22 -1 -15 -2 -12
-14.18 -0.32 -0.007 -3.07 -0.001 -1.62 -0.007 -2.16
default + TNS (ns) (-66%) | (-88%) | (-92%) | (-20%) | (-95%) | (-28%) | (-83%) | (-19%)
unsupervised # of violations 1622 149 2 1288 1 823 4 1103
clustering [11] | total WL 0.999 1 1 0.998 0.998 0.996 | 0977 | 0.976
clock WL - 0.994 - 0.999 - 0.978 - 0.985
total power 1 1.001 1.001 0.999 | 0.997 0.996 | 0.992 | 0.991
clock power - 0.994 - 0.989 - 0.998 - 0.986

(ﬁ&Dre 1 Y.-C. Ly, T. Yang, S. K. Lim, and H. Ren, "Placement optimization via PPA-directed graph clustering", Proceedings of the ACM/IEEE Workshop on Machine Learning for CAD
univeErsiTy  (MLCAD), pp. I-6, Sept. 2022
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Deep Graph Clustering: Results
e
- PPA improvements for all benchmark circuits
2.2% improvement in power consumption
26% improvement in WNS
1.4% improvement in wirelength
- Lower number of DRC violations
- Reduction of 60.9% in the
routing congestion of hotspot locations

default tool flow

max hotspot area: 43.97 max hotspot area: 17.17 (-60.9%)
*max hotspot area is the largest contiguous area of gcells with overflow

ﬁDre Y.-C. Ly, T. Yang, S. K. Lim, and H. Ren, "Placement optimization via PPA-directed graph clustering", Proceedings of the ACM/IEEE Workshop on Machine Learning for CAD
UnivErsiTy  (MLCAD), pp. -6, Sept. 2022
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Automated Cell Placement By Google

103

- Primarily for digital cell placement optimization with RL and GNN
Applications: design google accelerator chips (TPUs)

- RL for placing macros and heuristics to place standard cells
RL reward: expected wirelength (i.e., HPWL) and expected congestion

- Edge-based GNN operate on embeddings of placed partial graph and candidate node

Features Reduce
Edge mean Edge
Graph Conv Embeddings :| Embedding
Macro Features
Oﬂ‘ﬂ Macro Index ] ,(\:Au"ent
A acro
Netlist Graph ~ — £mbedaings Embedding

Current Macro Id

Netlist
Netlist Metadata - Metadata

Embedding

(ﬁ,DI'eXCI A.Mirhoseini, et al., "A Graph Placement Methodology for Fast Chip Design", Nature, No. 594, pp. 207-212, June 2021

UNIVERSITY
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Deep Re-Enforcement Learning for Global Routing

e —————————

- Problem Formulation

Predict optimality of routing measured by overflow and Problem Sets
minimization of total wire length EaEiar
Initial phase: Placement

Final phase: Detailed routing l

Baseline: Sequential A* algorithm Problem file
File parsing

Multipin Decomposition

- Files utilized for RL global routing (Problem file) l

Specify the dimensions of the routing grid
(e.g., width, height, and layers)

A* Search Membry | paN
Router = Burmtin " "Router

Mergi Mergel
- A Deep Q-network (DQN) A - =
* searcl
solution solution

Solution Evaluation

ﬁ;DI'eXGI H. Liao,W. Zhang, X. Dong, B. Poczos, K. Shimada, & L. B. Kara, "A deep reinforcement learning approach for global routing." Journal of Mechanical Design,Vol. 142,
TY No. 6, pp 061701, Nov. 2019.
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A* algorithm

— 109

- Routing regions represented as a graph A* search between bottom-left red
dot to upper-right green dot

- Find shortest path between a given node and a target node

- Given an initial and final cell on a square grid
g : cost of moving from the initial cell to a certain cell on grid
h : estimated cost of moving from the current cell to the final cell
Euclidean distance
Manhattan distance
f=g+h
Procedure: select and move to the smallest f-valued cell »

Source: Wikipedia

- Limitation
High space complexity as storage of all nodes in paths is required

& Drexel
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Deep Q-network (DQN) for Global Routing

—

. States Definition

X, Y, z coordinates representing the agent's current
position within the routing grid
Fo - — —
State Updates /3 yas y
Location Update: Position of the routing agent ! !
Capacity Adjustment: Wire utilization O = e
= Vs z
Layer 1
. y
4
Via 2 Via 3
A{--1-A
Vertical l
Direction [A,_ | 'v"‘ B a
ia Via 4

Layer 2

Horizontal Direction

ﬁ;DI'eXGI H. Liao,W. Zhang, X. Dong, B. Poczos, K. Shimada, & L. B. Kara, "A deep reinforcement learning approach for global routing." Journal of Mechanical Design,Vol. 142,
TY No. 6, pp 061701, Nov. 2019.
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Deep Q-network (DQN) for Global Routing

- States Definition
X, Y, z coordinates representing the agent's current

Environment

position within the routing grid. Bumin DRL lterations m 2.'?.,,?"
State Updates ‘Algorithm

Location Update: Position of the routing agent
Capacity Adjustment: Wire utilization

Reward >0

- Network Architecture
Comprises several fully connected layers
Layers are followed by activation functions (ReLU)

- Reward Mechanism
Overflow (OF) and Total Wire Length (WL)

(ﬁ!DreXel H. Liao,W. Zhang, X. Dong, B. Poczos, K. Shimada, & L. B. Kara, "A deep reinforcement learning approach for global routing." Journal of Mechanical Design,Vol. 142,
UNIVERSITY No. 6, pp 061701, Nov. 2019.
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GAN-CTS: Generative Adversarial Learning for Clock Tree Optimization

- Problem Formulation

Objective: Predict optimal CTS parameter setup for a commercial tool

Baseline: Clock power, clock wirelength, and max skew of CTS
generated on commercial tool's auto-setting

Input data: Post-placement layout images

=,

Trial Routing Flip Flops  Clock Net

Netlist Name # Nets | # Flip Flops | # Total Cells
AES-128 90,905 10,688 113,168
. Arm-Cortex-M0 13,267 1,334 12,942
- Dataset Generation NOVA 138,171 29,122 136,537
. . ECG 85,058 14,018 84,127
Toolset: Synopsys Design Compiler, Cadence Innovus JPEG 231,934 37,642 219,064
LDPC 42,018 2,048 39.377
PDK: TSMC 28nm TATE 185,379 31,409 184601
No of CTS samples
. Type Parameters Values or ranges
Per design: 5 * 7 * 100 = 3500 Placement | @spect ratio 05.0.75, 1.0, 1.25, 1.5
. * - utilization 0.4,045,05, ...,0.7
Total dataset: 3500 * 7 = 24500 i skow D) 001,031
1 1 max fanout 50, 250]
Tralrl'/FeSt Spht max cap trunk (pF) 0.05,0.3
Traunmg set: ARM, ECG, JPEG, LDPC, TATE max cap leaf (pF) 0.05,0.3
. max slew trunk (ns) 0.03,0.3
Testlng set: AES’ NOVA €IS max slew leaf (ns) 0.03,0.3
max latency (ns) 0, 1]
max early routing layer | 2,3,4,5,6
min early routing layer | 1,2,3,4,5
max buffer density [0.3,0.8]
ﬁDreX Reference: Y.-C. Lu, ). Lee, A. Agnesina, K. Samadi, and S. K. Lim, "GAN-CTS: A generative adversarial framework for clock tree prediction and optimization", Proceedings
UNIVERSITY of the IEEE/ACM International Conference on Computer Aided Design (ICCAD), pp. 1-8, 2019
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GAN-CTS Framework

- Use post-placement layout images to predict and optimize CTS parameters
- Consists of four separate models

Generator

generated real
CTS inputs CTS inputs

Flip Flop

foes

Regression
model

CTS outcome fake/real success/fail
prediction decision decision

Discriminator

Routing

(ﬁ,DI’eX 1 Y.-C. Ly, J. Lee, A. Agnesina, K. Samadi, and S. K. Lim, "GAN-CTS: A generative adversarial framework for clock tree prediction and optimization," Proceedings of the
UNIVERSITY  IEEE/ACM International Conference on Computer Aided Design (ICCAD), pp. 1-8, Nov 2019
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GAN-CTS Framework: Placement Image Feature Extraction

- Use ResNet-50 (pre-trained deep image network) for feature extraction

random

Generator .
noise

Flip Flop generated real
CTS inputs CTS inputs FC 2 (256 neurons)

>
FC 3 (64 neurons)
Clock Net REGEE I Discriminator
s model ]
I CTS outcomell  fake/real success/fail TrialRouting  FlipFlops  Clock Net Estinaled ooy
Routing prediction decision decision
ﬁDre Y.-C. Lu, J. Lee, A. Agnesina, K. Samadi, and S. K. Lim, "GAN-CTS: A generative adversarial framework for clock tree prediction and optimization," Proceedings of the
UNivErsiTy  IEEE/ACM International Conference on Computer Aided Design (ICCAD), pp. 1-8, Nov 2019
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GAN-CTS Framework: Placement Image Feature Extraction

- Use ResNet-50 (pre-trained deep image network) for feature extraction
- Embed placement images into low dimensional vector embeddings

Generator

Concatenate Layer |
T A4
{

generated real
CTS inputs CTS inputs

Flip Flop
ResNet-50 |l ResNet-50 [l ResNet-50

-

i)

Clock Net

Regression

Discriminator
model

CTS outcome fake/real success/fail Trial Routing  FlipFlops  Clock Net

prediction decision decision

Routig

(ﬁ&Dre el Y.-C. Ly, J. Lee, A. Agnesina, K. Samadi, and S. K. Lim, "GAN-CTS: A generative adversarial framework for clock tree prediction and optimization," Proceedings of the
UNIVERSITY  IEEE/ACM International Conference on Computer Aided Design (ICCAD), pp. 1-8, Nov 2019

FC 2 (256 neurons)
FC 3 (64 neurons)

Iﬂ@l

Estimated Power
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GAN-CTS Framework: CTS Outcomes Prediction

- Use the extracted features and CTS parameters to predict for circuit properties
Power consumption

Wirelength
Clock skew
extracted CTS
Generator ran(_jom features parameters
noise
Shared FC layer 1
Fip-Flop generated == Shared FC layer 2

CTS inputs CTS inputs

Shared FC layer 3

Regression
model

Clock Net Discriminator power FC layer 1 WL FC layer 1 skew FC layer 1

power FC layer 2 WLFC layer 2 skew FC layer 2

power FC layer 3

power prediction WL prediction skew prediction

WLFC layer 3

skew FC layer 3

v
CTS outcome fake/real success/fail
Routing prediction decision decision

ﬁDre 1 Y.-C. Lu, J. Lee, A. Agnesina, K. Samadi, and S. K. Lim, "GAN-CTS: A generative adversarial framework for clock tree prediction and optimization," Proceedings of the
UNivErsiTy  IEEE/ACM International Conference on Computer Aided Design (ICCAD), pp. 1-8, Nov 2019
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Generator network proposes candidate CTS parameters
Discriminator network tunes for the best candidate

generated
CTS inputs CTS inputs

v
Rl Discriminator
model
fake/real success/fail
decision decision

CTS outcome
prediction

Routing

UNIVERSITY  IEEE/ACM International Conference on Computer Aided Design (ICCAD), pp. 1-8, Nov 2019

GAN-CTS Framework: Generator/Discriminator

- Use Generative Adversarial Network to predict optimal CTS parameters

extracted
features

input layer (256 neurons)

leaky ReLU

batch normalization

hidden layer (128 neurons)

leaky ReLU

batch normalization

leaky

output layer

regression
model

input layer (64 neurons)

batch normalization

RelLU

(D neurons)

discriminator

generated CTS inputs | extracted real CTS inputs
(generator) features (database)
v

leaky ReLU

generated / real decision

ﬁ,DreXel Y.-C. Ly, J. Lee, A. Agnesina, K. Samadi, and S. K. Lim, "GAN-CTS: A generative adversarial framework for clock tree prediction and optimization," Proceedings of the

hidden layer (64 neurons)
leaky ReLU

hidden layer (64 neurons)

input layer (128 neurons)

leaky ReLU

hidden layer (64 neurons)

leaky ReLU

hidden layer (64 neurons)

leaky ReLU

hidden layer (64 neurons)

success / fail

leaky ReLU

ure decision
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GAN-CTS Results

. _ netlist CTS Metrics Auto-Setting GAN-CTS
Clock trges generated by GAN-CTS havg Firied bafters 5 R
more optimal clock power, skew, and wirelength s | clock power (mW) 2034 9.86 (-51.5%)

. : clock wirelength (mm) 34.09 27.78 (-18.5%)
as compared to the commercial tool maximum skew (ns) 0.019 0.018 (-53 %)
GAN-CTS provide improved metric scores c*l‘oic're;(‘)fe':‘;f\;j) o~ 132;6‘;75949‘;7;))
.. g = of ‘o
compared to the auto-generated clock trees MOV& 1 clock wirelength (mm) 118.24 97.92 (-17.2%)
maximum skew (ns) 0.031 0.033 (+6.4 %)
e Random Generated
18 GAN-CTS Generated
Q
8 16 o
3
z 14
[}
3 12
2
10
40
36 200
Ock wi 32 80 140
relg, 28 w (pS)
ngth ('77/77 max ske'
ﬁDre Y.-C. Lu, J. Lee, A. Agnesina, K. Samadi, and S. K. Lim, "GAN-CTS: A generative adversarial framework for clock tree prediction and optimization," Proceedings of the
UNivErsiTy  IEEE/ACM International Conference on Computer Aided Design (ICCAD), pp. 1-8, Nov 2019
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GAN-CTS Results
] 115

- Clock trees generated by GAN-CTS have e T T
more optimal clock power, skew, and wirelength aes clock power (mW) 2034 9.86 (-51.5%)
. : clock wirelength (mm) 34.09 27.78 (-18.5%)
as compared to the commercial tool maximum skew (ns) 0.019 0.018 (-5.3 %)
GAN-CTS provide improved metric scores C’i‘()‘:}:cg(‘)t‘ef‘:‘;ffvv) o 132;6‘;7349‘;7;7))
Cl 45. of 9. ‘0
compared to the auto-generated clock trees MOV& | clock wirelength (mm) 118.24 97.92 (-17.2%)
maximum skew (ns) 0.031 0.033 (+6.4 %)
18 ® Random Generated

GAN-CTS Generated

(M) Jamod 00|90
N

40

Clocy . 38 140
Wir 32 80 5
Clengy, mnjs 20 yskew® )

(ﬁ,DI’eX 1 Y.-C. Ly, J. Lee, A. Agnesina, K. Samadi, and S. K. Lim, "GAN-CTS: A generative adversarial framework for clock tree prediction and optimization," Proceedings of the
UNIVERSITY  |EEE/ACM International Conference on Computer Aided Design (ICCAD), pp. 1-8, Nov 2019
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GAN-CTS Results
]

- Clock trees generated by GAN-CTS have B e
more optimal clock power, skew, and wirelength acs clock power (mW) 2034 9.86 (-51.5%)
. : clock wirelength (mm) 34.09 27.78 (-18.5%)
as compared to the commercial tool maximum skew (ns) 0.019 0.018 (-5.3 %)
GAN-CTS provide improved metric scores :I‘O‘C':e;(‘f:'et";sz\;;) o~ ];2;6(('75949‘;757))

/ 3.0 o - o ‘0
compared to the auto-generated clock trees MOV& | clock wirelength (mm) 118.24 97.92 (-17.2%)
maximum skew (ns) 0.031 0.033 (+6.4 %)

- Confusion matrix of the successful and failed
classification of the NOVA benchmark circuit by 18 | ST
Discriminator D

Failure indicated a lower CTS metric score than
the auto-setting generated clock tree
Accuracy: 0.947

(M) Jamod %000
=

12
Fl-score: 0.952
Predictions 19
Success | Failure | Total 40
Ground [ Success | 1848 111 1959 Cloc 36 & 149 200
Truths | Failure | 74 1453 | 1527 irelengg, 28 20 20 cew (09)
Total 1922 1564 3486 (mm, max

ﬁDI‘exel Y.-C. Lu, J. Lee, A. Agnesina, K. Samadi, and S. K. Lim, "GAN-CTS: A generative adversarial framework for clock tree prediction and optimization," Proceedings of the
UNivErsiTy  IEEE/ACM International Conference on Computer Aided Design (ICCAD), pp. 1-8, Nov 2019
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ML-guided Analog Routing Approach: GeniousRoute

- Algorithm: Variational auto-encoders (VAEs) trained on layout images
Encoder: map input image to low-dimensional space
Decoder: generate routing guidance
Label: routing region of nets

- Routing prediction: for a given placement, VAE predicts the probability map that a wire is
placed in a region

- Routing algorithm: A* search algorithm guided by the trained VAE model

- Limitation: GeniusRoute is trained on a dataset consisting of comparators and amplifiers
without generalizing to other analog circuit types

e @ @ W0 @
oo B E =

(ﬁ!Drexe K. Zhu. et al., "GeniusRoute: A New Analog Routing Paradigm Using Generative Neural Network Guidance," Proceedings of the IEEE/ACM International
UNIVERSITY Conference on Computer-Aided Design (ICCAD), pp.1-8, Nov 2019
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Case Studies

Case Study 1: Prediction of Downstream Circuit Metrics in Physical Design
Timing Prediction, Interconnect Parasitic Prediction, Power Prediction

Case Study 2: Generation and Optimization of Circuits
Automated Placement, Clock Network Synthesis, Routing

Case Study 3: Transfer learning approaches

Case Study 4: Large Language Models in Physical Design

& Drexel
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Case Study 3: Transfer Learning for IC Design
|

- Transfer Learning involves applying knowledge gained from solving one problem and
applying it to a different but related problem

- Key in accelerating the design process by leveraging pre-trained models

- Key Components
Source Task: The original task where the model is trained
Target Task: The new task where the model is applied
Knowledge Transfer: The process of adapting the model from the source task to the target task

- Benefits of Transfer Learning
Efficiency: Reduces computational resources and training time needed
Performance: Enhances model performance especially when data on the target task is limited
Versatility: Enables cross domain applications

& Drexel
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Applications of Transfer Learning to IC Design

Cross Technology/
PDK Prediction

Utilizing models trained on
older technology node to
predict outcomes on newer
technology node. This helps in
adapting to new manufacturing
processes faster.

Cross Tool
Prediction

Applying knowledge learned
from one EDA tool to enhance
or predict the performance of
another tool.

Cross Design
Prediction

Cross Corner

Using models trained on
specific circuit designs (like
memories or analog circuits) to
predict characteristics of other
types of designs (like logic or
mixed-signal circuits).

Cross Functionality

Adapting models that are
trained for specific operating
conditions (temperature and
voltage corners) to predict
performance across different
conditions.

Employing data from one
functional area (like timing
analysis) to improve predictions
in another (like power analysis).

& Drexel
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Deep Learning Methodology to Model Golden Signoff Timing

121

- Develop a machine learning-based tool, Golden Timer eXtension (GTX), to correct discrepancies in
various timing metrics between different signoff timing analysis tools

- Correlate path slack between given two signoff timing tools (T1 and T2) and a design tool (D1)

Ensure consistency across tools i

s
2

Cross-tool validation o
-0.03
Facilitate multi-vendor environments s 7
g £ 005
Adapt to advanced technology nodes = 3
’ - S 02 % 007 100 ps
Streamline collaboration and handoffs @ - A
£ 03 +* 009
© a
:N 04 D~~o 11 -
0.5 -0.13
06 -0.15
= -0.15 0.1 -0.05 o
T, Path Slack (ns) T, Path Slack (ns)
(a) i-T>. (b) T1-D;.
- Precursor to model re-usability (transfer learning) across tools
(ﬁ,DI'eX S.S. Han, A. B. Kahng, S. Nath, & A. S. Vyydyanathan, "A deep learning methodology to proliferate golden signoff timing," Proceedings of the Design, Automation & Test in
UNIVERSITY  Europe Conference & Exhibition (DATE), pp. |-6, March 2014
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Deep Learning Methodology to Model Golden Signoff Timing
122
- Dataset - Model Architecture
PDK: 28nm FDSOI and 45nm GS foundry Metric to Predict: Flip-flop setup time, cell arc
libraries delay, wire delay, stage delay, and path slack at
# Instances (clock period in ns) timing endpoints
Testcase 45nm 28nm . . .
aes_cipher_iop | T8818 (T.0) 16683 (0.8) Hierarchical models using Random Forest and
wh_dma_op 3641 (0.5) 2349 (0.5) SVM
] T 76702 (1.25 33641 (0.67 . . .
'/peziZ%%er 2 ) 750354( (125 Model is "deep" because of the hierarchical
approach
Setup time
- Feature set (numeric) \
Capacitance (load, coupling, wire to ground) Celldelay KF————————__. Path slack
1
Wire resistance Fo-------- <3 stage delay /‘./
Cell slew (inp.ut, output) V| Wire delay :
Delay (cell, wire, stage) i e—
Flip-flop setup time
Path slack
ﬁg\)l?g‘% el zu i.)pl:ag)% ;Benljeafzix i,bl,\:,a;:,(g :T._ :).'\'/nylazﬂ::;;ﬁzzelip learning methodology to proliferate golden signoff timing," Proceedings of the Design, Automation & Test in
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- Dataset
PDK: 28nm FDSOI and 45nm GS foundry
libraries
# Instances (clock period in ns)
Testcase 45nm 28nm
aes_cipher_top 18818 (1.0) 16688 (0.8)
wb_dma_top 3641 (0.5) 2349 (0.5)

Jpeg_encoder

46702 (1.25)

33641 (0.67)

leon3mp

750854 (1.2)

- Feature set (numeric)
Capacitance (load, coupling, wire to ground)

Wire resistance

Cell slew (input, output)

Delay (cell, wire, stage)
Flip-flop setup time

Path slack

Deep Learning Methodology to Model Golden Signoff Timing
|

- Model Architecture

Range (Mx-Min) (ns)

Setup time

Path slack

Stage delay

006

- l

ooz I
[P —

Signoff timing tools (T1)
vs signoff timing tools (T2)

oo
Pathsiack  Sewptime  Stage del

idelay  Wie delay

Signoff timing tools (T1)

vs design tool (DI)

S.S. Han, A. B. Kahng, S. Nath, & A. S. Vyydyanathan, "A deep learning methodology to proliferate golden signoff timing," Proceedings of the Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 16, March 2014
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target domain/node

- Freeze a variable number of layers of the
prior model(s)

. Retrain with a smaller dataset in the

Algorithm 1 Transfer Training with Frozen Layers.

1
2
3
4
5:
6
7
8
9

10:

end for

: procedure TRAIN
U; « training data from target domain
P « pre-trained network
I < number of intermediate layers
h < number of frozen layers
freeze first h intermediate layers of P
for i € {h+1, h+2, ..., [}
retrain layer i of P on U;

repeat until the maximum number of epochs reached
11: end procedure

& Drexel

Transfer Learning with Domain Adaptation

Dataset 1

Learning Task 1

Prior Knowledge
(Pre-trained models)

y

Dataset 2

Learning Task 2

124
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Transfer Learning for Arrival Time Prediction
|

- Transfer setup - Modeling and Evaluation Scenarios
Source: 65 nm model Preliminary Scenario: Initial 65 nm model
Target: 28 nm transfer model Generate data for 65 nm
Baseline: 28 nm model Train model for 65 nm

Scenario I: 28 nm model
Generate data for 28 nm

- Dataset Train model for 28 nm
Circuits: Six IWLS'05 benchmark circuits Scenario II: Predict 28 nm arrival times using
PDK: Commercial 28 nm and 65 nm the 65 nm model
Toolset: Synopsys DC and ICC2 Compiler Infer on 28 nm
No new dataset generation and training for 28 nm
- No. of | No. of No. of Gates .
Design inputs | outputs |Sequential T Combimational T Totl Scenario III: Transfer model (65 nm to 28 nm)
ac97_ctrl 84 48 2199 9656 11855
aes_core 259 129 530 20265 | 20795 Generate data for 28 nm
wh_conmax 1130 1416 770 28264 | 29034 Fine tune model using 28 nm data
des3_perf 234 64 8808 89533 | 98341
usb_funct 128 121 1746 11062 12808
pei 162 207 3359 13457 16816

(ﬁ!Drexel P. Shrestha and |. Savidis, "Transfer Learning of Arrival Time Prediction Models from a 65 nm to a 28 nm Process Node," Proceedings of the IEEE Dallas Circuits and Systems
UNIVERSITY Conference (DCAS), pp. 1-6, April 2024

125

Transfer Learning Framework

126
- Re-use of Dataset Generation and Graph Representation
Dataset Generation Graph Data Representation Arrival Time Transfer Flow
— A ) [ raing || Source Model Training
Data |28 nm Bl ] oY Yy Data ®
1 Data S8 s d — )
g L ¥ | 65nm — - —»Prediction
Functional Design = o S Dar(‘;“ :
Design Constraints — =
I
R S : L» Test Data > Model Evaluation | Fielatonletics
Logical Synthesis . Netlist Graph 9@ ¢ | [ WAPRMARMEE |
Netlist \m’( TN
(verilog, DEF) ';"Pe“s‘; "’e‘gpt;"snsggsgﬂ‘es R = Source to Target Model Fine Tuning
repr
Floorplanning P Y % Do
l - Wires represented by ‘1" . ¥
- edges Y ¥ snm Prediction
Placement Timing Report X Zgar:;v\ ¥ —>Predicti
l from STA s %
Clock Network N s 'a o '
Synthesis Timing Path 1 3 3 L5 TestData ———»f Model Evaluation —f giaieion Vetics
‘17 Parasilics Graph G 6) €2 "
) v v
FBii (SPER) -Sub-graphs Gy 63 @3 28 nm Real-time Ariel e Arrival Time
outing extracted from netlist X & & Data Representation T’E::'g'f:f;dm ™ Prediction
DI'eX P. Shrestha and I. Savidis, "Transfer Learning of Arrival Time Prediction Models from a 65 nm to a 28 nm Process Node," Proceedings of the IEEE Dallas Circuits and Systems
UNIVErsiTy  Conference (DCAS), pp. |-6, April 2024
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Transfer Learning Framework

Dataset Generation

65nm == A_
Data |28nm 2=
= Data
Functional Design ) :

Design Constraints

Logical Synthesis Netlist Graph

Netlist
(verilog, DEF) - Inputs, outputs and gates
Floorplanning represented by nodes
l - Wires represented by
edges
Placement Timing Report
l from STA
Clock Network .
Synthesis Timing Path :
L = Graph @
{SFEE) - Sub-graphs ¥
Routing

@3
extracted from netlist ¥
()

Graph Data Representation

& Drexel

Conference (DCAS), pp. |1-6, April 2024

nl

Netlist graph representation

- Re-use of Dataset Generation and Graph Representation

. INPUT

ble w outeuT
WIRE

N GATE

*®
*
.
*

L 4
- @
) 26 ® .
13 * -
Y L]
™ .

Timing Path Graphs

Node features of timing path graphs

Feature Type Feature Source

Aspect ratio

Max utilization
Max skew

Max fan-out

Max clock network
Max Tatency

Design parameters
Setup features 8 b

Size
Clock period 1

1

1

1

1

1

1

Standard cell

Standard cell features 859 | LEF/DEF file
one hot encoding

Stractural features | LogIc level 1| Calculated from netlist
‘Number of fan-out gates T | graph representation
Tnitial phase gate delay 1 ;

Timing report features oy Phase arrival fme i STA timing report

IC Compiler generated

Parasitic features SPEF file

Total interconnect capacitance | 1

P. Shrestha and |. Savidis, "Transfer Learning of Arrival Time Prediction Models from a 65 nm to a 28 nm Process Node," Proceedings of the IEEE Dallas Circuits and Systems
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Transfer Learning Framework

GCN Layer

Linear Layers

65 nm Dataset
Timing Path Graphs |

17inputs  16inputs  1Ginputs  16inputs  16inputs 16X 1
16 outputs 16 outputs 16 oulputs 16 outputs 16 outputs

ninputs
16 outputs

Post Floorplan Arrival Time

Source Network

GCN Layer Linear Layers

28 nm Dataset () ® ° Y
Timing Path Graphs = S
° i o g B 3
() RelU (| ReLU| () ReLU (| ReLU
. o | () ojuyl e
o Elmmn o B4 o B o
° o B o BN o
() () () )
o} © o © )
ninputs {7inputs 16inputs  16inputs  16inputs  T6inputs 16X 1
16 outputs. 16outputs 16 outputs 16 outputs 16 oulputs 16 outputs

Post Floorplan Arrival Time

Baseline Network

& Drexel

Conference (DCAS), pp. 1-6, April 2024

- Identical source and baseline models

Post Routing

Artival Time

. Post Routing
Artival Time

- Re-use of Dataset Generation and Graph Representation

1

65 nm
Data

L

Test Data ———————> Model Evaluation —» yor inE mse

Arrival Time Transfer Flow

Source Model Training
Training

Data ¥
" L. f—»Prediction
¥
¥

Evaluation Metrics
Test Data ———————» Model Evaluation —» e Vacqlice

Source to Target Model Fine Tuning
Training

Data

— (

¥ —»Prediction

I

Evaluation Metrics

2
Arrival Time
Prediction
Transfer Model

28 nm Real-time

59 Arrival Time
Data Representation

Prediction

P. Shrestha and |. Savidis, "Transfer Learning of Arrival Time Prediction Models from a 65 nm to a 28 nm Process Node," Proceedings of the IEEE Dallas Circuits and Systems
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Transfer Learning Framework

- Re-use of Dataset Generation and Graph Representation
- Identical source and baseline models

- Transfer tuned model
Freeze all layers for 65 nm model
Add transfer layer for 28 nm to fine tune

Arrival Time Transfer Flow

; Source Model Training
~ Training ‘

—
A Dat:
pge— e ¥
¥ | 65nm F ) |—»Prediction
O/ pata O
X —— ¥

s

L—» TestData —————————>f Model Evaluation — Si”pf‘m%';i

Linear Layers

GCN Layer Frozen Layers Fine-tune Layer
28 nm Dataset (7] ® ® 1)
Timing Path Graphs = = = Source to Target Model Fine Tuning

. ) O O 7 Training

b (| ReLy O RelU O RelU ) Data ‘*

G ). Post Routing (
()" Anival Time Y —»Prediction

* () O
° ¥
© ‘

- i"plms‘ 17inputs  1Ginputs  1Ginputs 1Ginpuls 16 inputs  16inputs 1 x 1 A
outputs. 16 oulputs 16 outpuls 16 outputs 16 oulpuls 16 oulpuls 16 oulputs T &
L5 Test Data ——» Model Evaluation - Fraluation Meties

Post Floorplan Arrival Time

v

28 nm Real-time

Fig: Transferred Network
Data Representation

Arrival Time
Prediction
Transfer Model

|_, Arrival Time
Prediction

P. Shrestha and |. Savidis, "Transfer Learning of Arrival Time Prediction Models from a 65 nm to a 28 nm Process Node," Proceedings of the IEEE Dallas Circuits and Systems

& Drexel

Conference (DCAS), pp. |1-6, April 2024
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Model
Performance

Time &
Resources

Remarks

& Drexel

Scenario |
(Baseline: Use of 28 nm)

Lowest MAE, MAPE among scenarios

Requires 4 hours and 23 minutes for data

generation and training

Best model performance
Worst time and resource investment

Transfer Learning Framework: Results

700 600{ XY 800
g %0 g 500 T
f % % 600
2 %0 2 w00 g
3 w0 3 g
% % 300 E 400
3 3 3
g £ 200 g
T 200 3 3
& & & 20
100 100
3 0 3
13 200 W 0 800 o © 160 200 300 40 560 600 760 o 200 40 600 800
Expected arrival time (ps) Expected arrival time (ps) Expected arrival time (ps)
Expected vs Predicted Value: Expected vs Predicted Value: Expected vs Predicted Value:
Scenario | Scenario Il Scenario Il

Scenario Il Scenario
(Direct Use of 65 nm) (Transfer Model Tuning)

43.73% higher MAE, 42.69% higher 38.49% improvement in MAE, 28.16%
MAPE compared to Scenario | improvement in MAPE compared to Scenario Il

Requires | hour and 25 minutes for dataset
generation; 4 minutes for fine-tuning

No additional data generation or modeling
required, time-efficient compared to Scenario |

Medium model performance
Medium time and resource investment

Worst model performance
No time and resource investment

P. Shrestha and |. Savidis, "Transfer Learning of Arrival Time Prediction Models from a 65 nm to a 28 nm Process Node," Proceedings of the IEEE Dallas Circuits and Systems

Conference (DCAS), pp. 1-6, April 2024
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Transfer Performance Modeling Across Technology Nodes for the Same
Circuit

- Transfer learning is applied on models trained in 180 nm for the performance
modeling of an op-amp in 65 nm

- Transfer learning significantly improves the sample efficiency for circuit performance
modeling with simulation-based sizing data
Up to 50% improvement in MAE on test data

T

I—I

wgl e 1,
Mh:b_| c I L
() JTMB

D Z. Wu and |. Savidis, “Transfer Learning for Reuse of Analog Circuit Sizing Models Across Technology Nodes,” Proceedings of the IEEE International Symposium on Circuits and
e
UNIVERSITY Systems (ISCAS), pp. -5, May 2022
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Comparison of Sample Efficiency for Training of the Gain Predictor

- Standalone training requires 1000 - Transfer learning requires 100 samples
training samples to achieve test error to achieve test error of 0.07
of 0.076
0.15 T T T T T T T T T T T T T
014 § :
013t \ 1 o4
012 b 1
0.12
5011} N
201t
2 & 0.10
F 009t
008 No—o— /7,, | 0.08 _
007 | ~ j ,_| = e O
NE s =| = | =
0.06 T TTTe—9 : T 7 T r T T T
P PSS Base f=0 f=I f=2 =3 f=4 f=5  f=6
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 f: number of frozen layers
Number of training samples
ﬁDre Z. Wu and |. Savidis, “Transfer Learning for Reuse of Analog Circuit Sizing Models Across Technology Nodes,” Proceedings of the IEEE International Symposium on Circuits and
UNIVERSITY Systems (ISCAS), pp. -5, May 2022
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Case Studies

T [

Case Study 1: Prediction of Downstream Circuit Metrics in Physical Design
Timing Prediction, Interconnect Parasitic Prediction, Power Prediction

Case Study 2: Generation and Optimization of Circuits
Automated Placement, Clock Network Synthesis, Routing

Case Study 3: Transfer learning approaches

Case Study 4: Large Language Models in Physical Design

& Drexel
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Natural Language as a Modality in EDA
|

- EDA has diverse natural language artifacts encoding both intent and flow state:
RTL + RTL comments + inline intent
Constraints and design assumptions
Engineering logs / tool diagnostics / reports (STA, P&R, DRC, IR, coverage)
Documentation, bug trackers, internal notes
Academic + industry publications / benchmarks

- These natural language sources are being used today for:
chatbots / design assistants (ChipNeMo, ChatEDA, OpenROAD-Assistant)
code + constraint generation (ChipGPT, BetterV, RTLLM, VeriGen)
error explanation + debug triage (LLM-aided synthesis error explanation)
spec extraction + semantic grounding (SpecLLM, AssertLLM)

& Drexel
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VerilogEval: Evaluating Large Language Models for Verilog Code Generation
|

- Open benchmark for measuring functional correctness of LLM based Verilog generation

System Prompt (Optional):

. Curated bel’lchmarks You only complete chats with syntax correct Verilog code. End the
Verilog module code completion with ‘endmodule’. Do not include
BenChma-r kS SOurCCd frOm module, input and output definitions.
(widely used digital design learning platform)
Question Prompt:
156 Venlog tasks selected with clear Speciﬁcations Implement the Verilog module based on the following description. As-
. . . sume that signals are positive clock/clk edge triggered unless otherwise
known reference implementations, and deterministic stated.

simulation behavior

Problem Description:

Given an 8-bit input vector [7:0], reverse its bit ordering.
module top_module (

- Evaluation Process input [7:0] in,

output [7:0] out

LLMs are prompted with each task to generate Verilog Vi

Generated Verilog is compiled + simulated under the Canonical Sottion:

same test harness assign {out [0],out[1],out[2],out[3],out(4],
Correctness determined by functional simulation match oy [ 1rouE [l out LA = e
Pas metric:

percentage of tasks where at least one of the top-k generated candidates simulates correctly

(ﬁ,DI'eX 1 L. Mingjie, N. Pinckney, B. Khailany, and H. Ren, "Verilogeval: Evaluating large language models for verilog code generation," Proceedings of the IEEE/ACM International
UNIVERSITY  Conference on Computer Aided Design (ICCAD), pp. 1-8, Oct 2023
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VerilogEval: Evaluating Large Language Models for Verilog Code Generation
| 136
- Models compared

GPT-4, GPT-3.5, verilog-sft

- verilog-sft
Take codegen-16B (open code LLM) and supervised fine tune it on Verilog prompt —
ground truth Verilog pairs (HDLBits style)
Teaches the model the correct mapping from spec — implementation in the HDL domain

- Evaluation Splits
VerilogEval-machine: canonical HDLBits prompts
VerilogEval-human: human-rephrased natural language versions of the same tasks

Model VerilogEval-machine VerilogEval-human
pass@1  pass@5  pass@l0 | pass@1 pass@5 pass@10
gpt-3.5 46.7 69.1 74.1 26.7 45.8 51.7
gpt-4 60.0 70.6 73.5 43.5 55.8 58.9
verilog-sft | 462 67.3 737 ] 2838 45.9 523

ﬁDI'eXC L. Mingjie, N. Pinckney, B. Khailany, and H. Ren, "Verilogeval: Evaluating large language models for verilog code generation," Proceedings of the IEEE/ACM International
UNIVERsITyY  Conference on Computer Aided Design (ICCAD), pp. |-8, Oct 2023
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https://hdlbits.01xz.net/wiki/Problem%20sets

ChipNeMo: Domain-Adapted LLMs for Chip Design

Domain-Adaptive

- NVIDIA’s domain adapted large language model Pretraining _ Frevaining
- Foundation Models
Base LLM Model: T iemetoaa”" (78, 38, 708) osin doosicock
start with huge generic internet scale pretraining — =R TR
Llama?2 foundation models (7B / 13B / 70B) gl
ChipNeMo R — ChipNeMo
Chat Models (Slee?gjl//‘szf'—srlj s FOT;Bdn:lsng %Bd’els

(78, 138, 708) "+ 1.4K task insts
Domain-Adaptive Pretraining (DAPT): 100+ GPU s
pretrain based LLM on domain-specific corpora
(EDA code, logs, specs) so it becomes fluent on the - DAPT = what the model knows (domain fluency)

technical domain - Alignment = how the model responds
(domain correct behavior)

Model Alignment:

: _ San : Data Data Training Training
supervised fine-tune on dommn instruction + tas_k Data Source TYPe | pyrcontage (%) ‘ Tokens (B) | Percentage (%) | Tokens (B)
data so the model behaves like a chip design engineer [Bugsummary 9.5% 74 10.0% 24

Design Source 47.0% 119 24.5% 59
Documentation 17.8% 4.5 34.0% 8.2
Verification 9.1% 23 10.4% 25
Other 7.9% 2.0 12.0% 29
Wikipedia 5.9% 1.5 6.2% 1.5
Github 2.8% 0.7 3.0% 0.7
[ Total [ 1000% | 253 1000% | 241 |
(ﬁ!Dre L. Mingjie, T.-D. Ene, R. Kirby, C. Cheng, N. Pinckney, R. Liang, J. Alben et al., "ChipNeMo: Domain-Adapted LLMs for Chip Design", preprint arXiv:2311.00176 , pp. 1-23,
UNIVERSITY  Apr2024
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ChipNeMo Use cases
| 152
- Engineering Assistant Chatbot

help designers reason about specs, flows,
constraints, error conditions, and next-step
actions in natural language

- EDA Tool Script Generation

generate /modify tool scripts (Tcl, synthesis, P&R
recipes, timing queries, etc.) for specific flows
and tool semantics

- Bug Summarization & Analysis
read logs, reports, regressions, failures

produce summaries, diagnoses root-cause, and
proposes next corrective actions

ﬁ‘DI'e L. Mingjie, T.-D. Ene, R. Kirby, C. Cheng, N. Pinckney, R. Liang, J. Alben et al., "ChipNeMo: Domain-Adapted LLMs for Chip Design", preprint arXiv:2311.00176 , pp. 1-23,
UNIVERSITY Apr 2024
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ChipNeMo Use cases

- Engineering Assistant Chatbot

help designers reason about specs, flows,
constraints, error conditions, and next-step
actions in natural language

- EDA Tool Script Generation

generate /modify tool scripts (Tcl, synthesis, P&R
recipes, timing queries, etc.) for specific flows
and tool semantics

- Bug Summarization & Analysis
read logs, reports, regressions, failures

produce summaries, diagnoses root-cause, and
proposes next corrective actions

39

Question:
why do we add retiming stages?

Answer:

Retiming stages are added to improve the timing of the
design and to account for the physical distance between
different parts of the chip. By adding retiming stages,
we can reduce the amount of time it takes for signals

to travel between different parts of the chip, which can
help to improve the overall performance of the design.
Additionally, retiming stages can also help to reduce the
amount of noise and interference that can occur on the
signals, which can further improve the performance of the
design.

(ﬁ!D X L. Mingjie, T.-D. Ene, R. Kirby, C. Cheng, N. Pinckney, R. Liang, J. Alben et al., "ChipNeMo: Domain-Adapted LLMs for Chip Design", preprint arXiv:2311.00176 , pp. 1-23,

UNXE{SITY Apr 2024
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ChipNeMo Use cases

- Engineering Assistant Chatbot

help designers reason about specs, flows,
constraints, error conditions, and next-step
actions in natural language

- EDA Tool Script Generation

generate /modify tool scripts (Tcl, synthesis, P&R
recipes, timing queries, etc.) for specific flows
and tool semantics

- Bug Summarization & Analysis
read logs, reports, regressions, failures

produce summaries, diagnoses root-cause, and
proposes next corrective actions

UN }‘S siTy  Apr2024

— _ 10

-
Question:

Write a TOOL2 tcl proc to find intersecting logic from
pins "$pinA’ to pin '$pinB’.

Answer:

4G, are Jethe codes
#S re is the code:

Ssure, here is

proc myfunc {pinA pinB} {

set all the pins in the

—
set fanout_pins [fanout —-from $pinA]

¥ Get =% ns in the fanout of the
—

>ction of the two

-
set intersection [common_logic
— $fanout_pins $fanin_pins]

te

4 Retl "

return $intersection

ﬁD X L. Mingjie, T.-D. Ene, R. Kirby, C. Cheng, N. Pinckney, R. Liang, J. Alben et al., "ChipNeMo: Domain-Adapted LLMs for Chip Design", preprint arXiv:2311.00176 , pp. 1-23,
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ChipNeMo Use cases

Engineering Assistant Chatbot

help designers reason about specs, flows,
constraints, error conditions, and next-step
actions in natural language

EDA Tool Script Generation

generate /modify tool scripts (Tcl, synthesis, P&R
recipes, timing queries, etc.) for specific flows
and tool semantics

Bug Summarization & Analysis
read logs, reports, regressions, failures

produce summaries, diagnoses root-cause, and
proposes next corrective actions

Apr 2024

Prompt:

Bugld : 002

Synopsis : Request power/current measurement on fabrics using fabric test module

Module : Silicon - DFT

Description :

Hi all,

We want to evaluate silicon current (power) consumed by fabric macros in a chip. This will help us correlate this power to
pre-Si power estimates

Here are the conditions we want to look at for this data.

Fabric test module activity: 0/25/50/75/100%

Comers:

typical_low_voltage

typical_high_voltage

We want to isolate fabric current (power) as much as possible, so we want to enable only the logic needed for fabric test
modules and the fabrics themselves.

If this information can be broken down per module (there are 6 in the chip). that will help.

Severity : 5-Performance

Priority : 5-Normal

Comments :

#1: Author : User A

Is this a requirement only for current or for future chips as well ?

#2: Author : User B

There will likely be interest in future chips to perform this exercise as we push the boundaries of fabric power density for
better area.

#3: Author : User A

What is needed in this bug ?

@User B It is not clear.

Can you list the specific needs with timelines and priority

Technical Summary:

In the internal bug management system, a bug has been filed regarding the power and current measurements of the fabrics in
the latest chip. The request is to evaluate the silicon current (power) consumed by the fabric macros in the latest chip and
to correlate this power to pre-Si power estimates. The conditions for the measurements are the fabric test module activity

at 0/25/50/75/100% and the corners are typical_low_voltage and typical_high_voltage. The data needs to be broken down per
module (there are 6 in the latest chip). Only the logic needed for fabric test modules and the fabrics themselves need to be
enabled

Managerial Summary:
User A asks User B if the need for evaluating the silicon current of fabric macros in a chip is only for that specific chip or
for future ones as well. User B replies that there will likely be interest in future chips to perform this exercise as they push
the boundaries of fabric power density for better ara. User A then asks what is needed in this bug and asks for specific
needs with timelines and priority.

Task Assignment:
User B

(ﬁ! L. Mingjie, T.-D. Ene, R. Kirby, C. Cheng, N. Pinckney, R. Liang, J. Alben et al., "ChipNeMo: Domain-Adapted LLMs for Chip Design", preprint arXiv:2311.00176 , pp. 1-23,
UNIV l R S l TY
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ChipNeMo Benchmark Evaluation

Engineering
Assistant
Chatbot

88 engineering questions

EDA Tool Script EDA tool scripting tasks
Generation across difficulty tiers

Bug Bug logs / regression
Summarization failures / engineering

Likert scale: human raters score
(Specs / Testbench / Build) | (poor) — 7 (excellent) * Higher judged usefulness and

Human scoring + comparison
against GPT-4 scoring baseline ~ * Domain adaptation consistently

e
Evaluation Measure Resut Sumrmary

Moderate, clear improvement from
domain-adaptive pretraining

correctness vs. base LLM

* Domain-adaptive pretraining
delivered the largest lift

Pass@5 accuracy (success if any ¢ Final ChipNeMo achieved ~20-
of top 5 answers is correct)

35% Pass@5 gains vs. base LLM
* Gains held across script evaluation
categories

* ChipNeMo slightly surpassed GPT-4
on clarity and actionable debugging

and Analysis  failure reports . . .
improved quality on this task
ﬁDr X L. Mingjie, T.-D. Ene, R. Kirby, C. Cheng, N. Pinckney, R. Liang, J. Alben et al., "ChipNeMo: Domain-Adapted LLMs for Chip Design", preprint arXiv:2311.00176 , pp. 1-23,
UNivERsiTy  Apr2024
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CVDP: Comprehensive Verilog Design Problems Benchmark (2025)

- First comprehensive benchmark set for

— 143

. . . Volume
Verllog RTL d631gn taSkS’ debugglng, ID Category Description Non- Agentic
verification, assertions, and comprehension Agentic

Code Generation
¢id02 | RTL - Code Completion 94 0
. 783 human-authored problems across 13 ¢id03 | RTL - Natural Language Spec to Code 78 37
t . bli b d testi cid04 | RTL - Code Modification 56 26
categories enabling broad tesung coverage ¢id05 | RTL - Spec to RTL (Module Reuse) 0 26
¢id07 | RTL - Code Improvement (Linting/QoR) 41 0
. . cid12 | Design Verification - Testbench Stimulus Gen. | 68 18
- Supports both non-agentic and agentic cid13 | Design Verification - Testbench Checker Gen. | 53 18
: : : cid14 | Design Verification - Assertion Generation 68 30
evaluation with dockerized agents ¢id16 | Design Verification - Debugging / Bug Fixing | 36 T
Code Comprehension
¢id06 | Correspondence - RTL to/from Specification |34 0
¢id08 | Correspondence - Testbench to/from Test Plan | 29 0
¢id09 | Question & Answer - RTL 34 0
¢id10 | Question & Answer - Testbench 26 0
Total # of Problems 617 166
(ﬁ,DI’ xe N. Pinckney, C. Deng, C.-T. Ho, Y.-D. Tsai, M. Liu, W. Zhou, B. Khailany, and H. Ren, "Comprehensive Verilog Design Problems: A Next-Generation Benchmark Dataset
UNIVERSITy  for Evaluating Large Language Models and Agents on RTL Design and Verification.", arXiv preprint arXiv:2506.14074, pp. 1-16, Jun 2025
143
OpenROAD-Assistant
144
OpenROAD: A fully open-source physical design platform covering RTL-to-GDSII flow
Objective: Fine tune a Retrieval Augmented Generation (RAG) model
Understands physical design intent in natural language
Generates correct, grounded OpenROAD physical design commands and scripts
EDA Corpus used in RAG tuning
OpenROAD documentation, OpenROAD API reference, OpenROAD example scripts/flows
Hand curated PD examples + queries built around those APIs
’ ‘ -»  Specific for QA Training
: Database -
3 ' Instruction
1 ] Dataset
: : Instruction Finetuning
I = 4
i e ' . \
1 | EDAC .-
: Unique Igrap!::et 4 RAFT ‘ % Llama3-88
¥ " Fandpicked Context + Prompt 1 Dataset —
SR S g an/ E":r:phrazr;; XAnSW(::mp ) &
ﬁDr X U. Sharma, B.-Y. W, S. R. D. Kankipati, V. A. Chhabria, and A. Rovinski, "Openroad-assistant: An open-source large language model for physical design tasks.", In
UNIVERSITY Proceedings of the ACM/IEEE International Symposium on Machine Learning for CAD (MLCAD), pp. 1-7, Sep 2024
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OpenROAD-Assistant — Model Tuning
145
Fine-tuning approach
base model: Llama3-8B
RAFT (Retrieval-Aware Fine Tuning) retrieval + SFT combined
yoTTTTTTTTmmmm T m T RAGy  —> General QA/Script Training
! 1 ==»  Specific for QA Training
. . . [ Retriever :
Retrieval-Aware Fine Tuning (RAFT) wlme N T N <
" Retrieved Context | ' ~Ins1mcnon
retrieved OpenROAD docs/APIs/script examples are u e A s
. . , . . RSN RRPR cicii. o 2" Insiucton Finetuning
inserted into the model’s input during training : ity Rttt -
. ' Corpus o '
model learns to ground generation on real OpenROAD + Urious et ey > Gpuamsee ||
semantics (not hallucinated commands / flags) e RGP Coier - o) Dalasel T prompt
IParaphrased Answer ‘. _ _ _ __ . _ _Answer/Sci P Tl 9,
. . . Q iestion
Supervised Fine Tuning (SFT) B PbERtt .
. . 1 Retriever OpeanOAD s Answer/
train on (retrieval context + NL prompt) — correct OpenROAD 1 odtase i\ Modsll >R~ Sore
SCIipt / answer pairs RETTTTTTTTTT Retrieved Context
teaches exact mapping from natural language
— valid physical design tool usage - RAFT teaches where the truth comes from
- SFT teaches how to generate the correct answer
using the truth.
(ﬁ!Dr xe U. Sharma, B.-Y. Wu, S. R. D. Kankipati, V. A. Chhabria, and A. Rovinski, "Openroad-assistant: An open-source large language model for physical design tasks.", In
UNIVERSIT \ Proceedings of the ACM/IEEE International Symposium on Machine Learning for CAD (MLCAD), pp. |-7, Sep 2024
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Results

]
Test Data: held-out OpenROAD PD tasks, scripts, and PD Q/A prompts derived from the
OpenROAD EDA corpus.

Script Adapter — generates OpenROAD Tcl PD scripts
Q/A Adapter — answers physical design questions in natural language

OpenROAD-Assistant is highest across both adapters:
Script adapter: 23 correct pass@l / 24 correct pass@3 out of possible 30
Q/A adapter: highest BERTScore + BARTScore across Precision / Recall / F1 metrics
frontier models (Claude3 / GPT-4 Omni / Llama3) fail on script correctness

[ Script adapter I QA adapter |
Category or Metrics | pass@1 pass@3 || BERTScore [ BARTScore

| Correct | Partial | Wrong | Correct [ Partial | Wrong || Precision | Recall [ F1 [ Precision | Recall [ F1 |
Found- | Claude3 0 2 28 0 3 27 0.8169 | 0.8337 | 0.8251 0.4681 | 0.5091 | 0.4855
ation GPT-4 Omni 1 1 28 4 3 23 0.8558 | 0.8549 | 0.8552 0.5634 | 0.5778 | 0.5689
models | Llama3 0 0 30 0 0 30 0.8354 | 0.8454 | 0.8403 0.5222 | 0.5401 | 0.5301
FT GPT-3.5 Turbo 6 6 18 11 4 15 0.8441 | 0.8441 | 0.8435 0.5514 | 0.5489 | 0.5393
Ablation | FT Llama3 13 4 13 14 3 13 0.8568 | 0.8463 | 0.8514 0.5899 | 0.5576 | 0.5714
studies RAG FT Llama3 17 5 8 19 5 6 0.8690 | 0.8641 | 0.8655 0.6206 | 0.6573 | 0.7099
RAFT Code Llama 20 3 7 20 3 7 - - - - - -

[ OpenROAD-Assistant || 23 6 1 24 5 1][ 0.9831]0.9855 [ 0.9843 | 0.9517 | 0.9604 [ 0.9557 |

ﬁ U. Sharma, B.-Y. Wu, S. R. D. Kankipati, V. A. Chhabria, and A. Rovinski, "Openroad-assistant: An open-source large language model for physical design tasks.", In
UNIV | R s | T y Proceedings of the ACM/IEEE International Symposium on Machine Learning for CAD (MLCAD), pp. 1-7, Sep 2024
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Outline of Presentation

- Machine learning techniques

- Case studies

- Standardizing ML for digital EDA

- Conclusions

& Drexel

N EEET

- Introduction to Electronic Design Automation
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Challenges in ML for EDA: Lack of standardized dataset

N T

- Absence of standardized, open datasets in physical design space is a significant barrier to
the advancement and validation of machine learning models

- Key Issues

Non-Reproducible
Datasets

Researchers rely on custom
datasets that are often not
reproducible by others, leading
to isolated findings and limited
scientific validation

& Drexel

Inconsistent Data
Handling

Challenges in
Data Sharing

Variability in data
preprocessing methods across
different studies undermines
the ability to compare and
validate outcomes effectively

Creating common frameworks
for model architecture and
training streamlines
development efforts and
enhance reproducibility across
studies
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Digital Synthesis Toolflows: Commercial Digital Synthesis Tools
|

Synoesys” cadence

Synopsys

Logical Synthesis DC Compiler Genus
Physical Design IC Compiler, FusionCompiler Innovus
Signoff PrimeTime, StarRC, PrimePower, Formality ECO Tempus, Joules RTL, Conformal Low Power, Litmus
RTL Simulation VCs Xcelium
Circuit Simulation HSPICE, FineSim Spectre
Custom Design Custom Compiler Virtuoso
Verification Verdi JasperGold
Power Analysis PrimePower Voltus
DFT and Test DFTMAX, TetraMAX Modus
Yield Optimization Yield Explorer Yield Enhancer
Analog/Mixed-Signal Design CustomSim, Galaxy Custom Designer Spectre,Virtuoso AMS Designer
Process and Device Simulation Sentaurus (No direct equivalent)
(ﬁ” DreXel ] Source:
UNIVERSITY o 2 Slid S3190-2 s
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Digital Synthesis Toolflow: OpenLANE

. Open source, open access

DESIGN STEP EDA Tool
. OpenROAD for RTL-GDSII flow Logic Synthesis Yosys and ABC
. . . DFT Scan Insertion Fault
Rapid architecture and design space DFT ATEG Fault
exploratlon Formal Verification Yosys
Ear ly prediction of QOR Placement RePlAce and OpenDP
- Routin, FastRoute and TritonRoute
Detailed pl g
p - CTS TritonCTS
Design
ATL @ Extraction Magic
Timing Analysis OpenSTA
) 3 Chip Floorplanning PADGen
:] LVS Netgen
RTL Synthesis LEC RC Extraction DRC Magi
G g ? - GDS Streaming Out Magic
xploration & A
2 (OpenSTA)
10.5:2'“) % Optimization [D'r'r?:::::muger
(i) l e
(magic & netgen)
Global Routing F‘k;:::;:‘::“
L—. i iﬂs? Slren;mnw
magic
= Explorae
xploration
D M. Shalan and T. Edwards, "Building OpenLANE: A 130nm OpenROAD-based Tapeout-Proven Flow", Proceedings of the IEEE/ACM International Conference on Computer Aided
TeEX !
univErsiTy  Design (ICCAD), pp. I-8, Nov 2020
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https://www.synopsys.com/implementation-and-signoff.html
https://www.synopsys.com/implementation-and-signoff.html
https://www.synopsys.com/implementation-and-signoff.html
https://www.synopsys.com/implementation-and-signoff.html
https://www.synopsys.com/implementation-and-signoff.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff.html

Comparison of Digital Synthesis Platforms

Open PDK Support 3D Purpose Silicon
source/softwa Integration Proven?

Synopsys High Paid Yes Commerical Yes
Cadence No High Paid Yes Commerical Yes
OpenLANE Yes Low Free No Academic Yes

- Closed PDKs
TSMC 16nm/28nm/65nm

Global Foundries 22nm/130nm
Intel 16nm

- Open Source PDKs
Skywater 130 nm
IHP 130 nm
ASAP 7 nm
Global Foundries 180 nm
Nangate 45 nm
ICSprout 55 nm

(ﬁ,Dr exel
UNIVERSITY
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Standardized Training and Evaluation Protocols in ML for EDA
|

- Opportunities for Improvement

Establishing
Ground Truths
and Baselines

Harmonizing
Train/Test Split
Methodologies

Unifying Model
Architectures and
Training Processes

Evaluation Metrics
and Procedures

Developing industry-wide
accepted ground truths and
baselines leads to more robust
model comparisons and
validations, accelerating the
adoption of ML in EDA

Standardizing how data is
divided for training and testing
improves model fairness and
performance consistency
across diverse applications

Creating common frameworks
for model architecture and
training streamlines
development efforts and
enhance reproducibility across
studies

Defining clear, universally
accepted metrics and
evaluation procedures
simplifies the assessment of
ML models, promoting
transparency and reliability

& Drexel
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End-to-End Machine Learning for EDA

- Dataset modeling and benchmarking
Standardized dataset and data models
Metric of coverage, generalization
Benchmarks on common problems and models

- ML modelling and training framework
Feature engineering pipeline
Modeling architecture
(GNNs, autoencoders, multi-modal, etc.)
Evaluation scheme
Hyper parameter tuning
Feature importance

- Application space
Leaderboard

Design
Generation

RTL/Netlist to GDSII
Placement generation
CTS generation
Routing generation

Design Optimization/Improvement

Placement, CTS, Routing optimization

to optimize/improve

power, performance, area, DRC violation

Placement cell clustering

Clock sink clustering

Bujuiea sojsue)

Early Warning/Downstream Metric Prediction

Parasitic i

Timing Prediction (arrival time, slack)

prediction

length

IR drop prediction Power (total, PDN, cell) prediction Thermal profile prediction
Resynthesis prediction  Critical path identification DRC violation prediction Hotspot prediction

s|opojy abenbue-] abie

(ﬁ,D exel
UNIVERSITY

Vision/hope: open repository with production ready designs that are encrypted and secured
but allow for ML design research by the community

165

EDA-learn

Data generation, representation, ML framework

EDA-datagen

Physical design flow automation for parameterized
large scale dataset generation
Run EDA tools to generate designs with public benchmarks

Toolboxes:
Parsers for standard formats of design files
Python interfaces

EDA-schema

Property graph data-model schema for
circuit data representation

EDA-ML

Rapid prototyping and evaluation for
EDA based machine learning models

& Drexel

design circuit,
design specifications——|

and

Data Generation Raw Data

EDA-learn

Store

EDA datagen to schema adaptor
< Processed
Data Store

Data Modelling

EDA-datagen

LY
B B B
NS parancs CoR ARpors
ey Tostes T
P o)
EDA-schema

Graph data  Tabular data

Model Prototyping
(pytorch-lightning)

Model salection
Model training
Mode evaluation

Model logging and visualization

Hyper-parameter tuning
(optuna)

EDA-ML

(tensorboard)
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EDA-schema

Design adjustments

»  Routing

No )

& Drexel

Functional Design
Logical Synthesis
»  Floorplanning
»  Placement

Clock Network
Synthesis

Signoft

- Standardized format of representing circuits

Structural data of the circuit

Performance metrics from reports

Netist
Representations

LY

Logical Netist
verdog)
LY
Estimated Static
Timing Analysi
g fheyen Prysical Netist
(LEF/IDEF)

Circuit
Characteristics

LY

Extracted Static Lo
Timing Analysis oo Cot et
Congeston)

LY
|

Tenng Rescrts
Tapeout E L
]

Exracieq Parasacs
(SPEF)

Physical design automation flow and corresponding netlist and
circuit data formats

- Property graph data-model schema incorporates circuit information

n7 n3 n4 n2

nl

L

06 #5 _ng e weur
V - oUTPUT
[ - ot
135 né
ﬂ‘ Netlist Graph
l nt 8
a1 GO
K DO nE "7
3| —
G5 G3 D1
n2
1 n4 ‘ e
n9 a = oureur
a6 \ e
2 d
K -
G4 D2 .
Timing Path Graph
Circuit
8- I o
g g »
Zes " >s:
w 1 P
S50 7 0 s o w5 w0 35 o ED 5 ED £ E
x coordinate (um) x coordinate (um)

Interconnect Graph

P. Shrestha, A. Aversa, S. Phatharodom, and |. Savidis, "EDA-schema: A graph datamodel schema and open dataset for“digital design automation," Proceedings of the ACM
Great Lakes Symposium on VLSI (GLSVLSI), pp. -8, June 2024
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EDA-schema: Entity Relationship Diagram

- Key components

Netlist
Clock Tree
Timing Path

Interconnect

- Features after each

design phase
Floorplan
Placement
CTS
Routing

& Drexel

critcalpaih level of logic:
ertical path cock period
#of siack vioations
crtical path sack

total negative siack

#of hod violations

worst hold vioation

total hold violation

gates

is ctcal

Timing Path Graph ¢

Nodes
-TP gates

ell Metrcs Netist 10 pins Gate Standard cell
[ name f—has——! name name name
#of sequental cell width dection structural features standard cel features
— logic level ~widh
#f butfercell heignt co-ordinates ~#offanins it
———— ~# o fan outs #ofinput pins
#of inverter cell wirelengih (estmated/actual) distance from closest nput #of utput pins
ot = | ~distance from closest output is sequential gate
of macios L distance from closest fip-fop Is Inverte gate
ot total cols [ - distance to closest ip-fop is buffer gate
Neist Graph (Heterogeneous) - drive strength
. pover features
Nodes dynantic pot power features
O L na - swiching power ~leakage power
Area Metics i o st capaciance features
spalia features Input capacitance
Combratonal ot area s put capactance
seauental cel area Glock Tree: - nlemal capeckance
bufter col area e timing features
- propagation deay
Inverter cell area = seltalldelay
ransiton tme
macros area #of butters
cellarea as L Jsorsinks
| ———— Iterconnect Iterconnect Segment
netarea wirlength (estimated/actual) el
total area name name
i roger
‘Clook Tree Graph (Heterogeneous) structural features, structura features
Nodes inputs N t ]
10 pins #of cutputs Interconnect segment length
Galos
Power Metrcs Interconnects spatialfeatures spatal features
HWPL Interconnect segment midpoint
internal pawer fe—|
parasic eatures parasiic features
switching power Timing Path (TP) TP Gato Iterconnect resistance ferconnect segment resistance
Interconnect capactance Interconnect segment capaciance
leakage power name name
tota power start point |—has—> tming teatures: fras_| congestion features congestion features
fe delay DY fong RUDY long
end point arival time ~RUDY short ~AUDY short
Y pin RUDY pin
anval time
Critial Path Metrics =D Interconnect Graph (Homogeneous
crtial path fength !

Nodes
- Interconnect segments

P. Shrestha, A. Aversa, S. Phatharodom, and |. Savidis, "EDA-schema: A graph datamodel schema and open dataset for digital design automation," Proceedings of the ACM
Great Lakes Symposium on VLSI (GLSVLSI), pp. -8, June 2024
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EDA-schema: Feature Analysis
|

Features used for machine learning driven circuit prediction problems in prior work.

Objective/Paper Available Feature Set

placement parameter optimization [R1] no. of cells, no. of nets, no. of IOs, no. of nets with fanout < 10, no. of flip-flops,
total cell area, no. of macros, macro area
pre-placement net length estimation [R2] net's driver's area, fan-in and fan-out size
total design power prediction [R3] minimum /maximum slack, worst input/output transition, switching power of driving net,
cell switching power, cell internal power, cell leakage power
pre-routing timing prediction [R4] driver and sink capacitance, sink locations, distance between driver and the target sink,
max driver input transition
arrival time prediction [R5] standard cell functionality, logic level, no. of fan-out, gate delay, interconnect capacitance,
arrival time
interconnect parasitic prediction [R6] interconnect capacitance, interconnect length, interconnect position, pin density, net density
wire parasitics and timing prediction [R7] half perimeter wire length (HPWL), no. of sinks, congestion estimates, rise transition,

fall transitions, interconnect length, interconnect RC

Reference:

[R1] A. Agnesina, K. Chang, and S. K. Lim, “VLSI placement parameter optimization using deep reinforcement learning,” Proceedings of the [EEE/ACM ional Confe on Computer-Aided Design (ICCAD), pp. 1-9,
Nov. 2020.

[R2] Z. Xie, R. Liang, X. Xu, J. Hu, Y. Duan, and Y. Chen, “Net2: A graph attention network method ized for pr net length » ings of the Asia and South Pacific Design Automation

Conference (ASPDAC), pp. 671-677, Jan. 2021.

[R3] Y.-C. Lu, W.-T. Chan, V. Khandelwal, and S. K. Lim, “Driving early physical synthesis exploration through end-of-flow total power prediction,” Proceedings of the ACM/IEEE Workshop on Machine Learning for CAD

(MLCAD), pp. 97-102, Sept. 2022.

[R4] E. C. Barboza, N. Shukla, Y. Chen, and ). Hu, “Machine learning-based pre-routing timing prediction with reduced pessi of the Design ion Conference (DAC), pp. 1-6, Jun. 2019.

[RS] P. Shrestha, S. Phatharodom, and I Savidis, “Graph representation learning for gate arrival time prediction,” Proceedings o the ACMIIEEE Workshop on Machine Learning for CAD (MLCAD), pp. 127-133, Sept. 2022.

[R6] P. Shrestha and 1. Savidis, “Graph representation learning for parasitic impedance prediction of the interconnect,” gs of the IEEE i ium on Circuits and Systems (ISCAS), pp. -5, May 2023.
(ﬁ,DI’ Xel [R7] V. A. Chhabria, W. Jiang, A. B. Kahng, and S. S. Sapatnekar, “From global route to detailed route: ML for fast and accurate wire parasitics and timing prediction,” Proceedings of the ACM/IEEE Workshop on Machine

UNIVERSITY Learning for CAD (MLCAD), pp. 7-14, Sept. 2022.
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Standardized Dataset
]

Dataset constraints and parameters

Open Dataset Parameters Valies or rages | ¥ of Samples
Clock periods (5] 05, 1,2,5] 7
. , . . Aspect ratio 0.5.0.75. 1] 3
Designs: 20 IWLS'05 benchmark circuits Max uilization 03.04,05] |3
Max skew (ns) T random sample
Max Tanout T random sampls
. Max clock network capacitance (pF) T random sample
PDK: Skywater 130nm [ Mx Taency () T fandom sample”|
Total circuits per design 6
D . T 1 O ROAD Overall circuits in dataset 36 ¥ 20 = 720
. No. of gates in dafaset 7468228
eSIgn oolset: pen No. of nets in dataset 7,726,920
No. of timing paths i datasct 1,561,795

Setup parameters

IWLS'05 benchmark circuit characteristics

Data generated is parsed — S e o Computation Eo

. Circuits | No-of | No.of | Sog o | (No.of | no. of no. of shogical | Floorplan | Placement | CTS | Routing | Total | faw | Prosessed

and mapped into inpucs | outputs | 200 | piiops | 8000 | | moof | 2R e | M
[aeo7_ctel [ 87 [ T G153 [ 2827 Tim 7 Tm | Sm | 8m | Sem | 12G REEY
aes_core [ 259 [ 120 20851 | 530 13673 [ 1195 Tim Sm | Z/m | Bm | Sm | ThZsm | 11G 11660
EDA—SChe[ na as des3_area | 240 61 3977 61 2347 116 5m 5m T7m 5m 5m T0m |_29G 0.298G
[des3_perl [ 231 [ ot 100155 | 8808 SG818 [ 16287 Th3om Zom Th53m | Z7m Z5m | ik dom | 85G | 8.221G
: cthernet | 06 115 69511 __| 10540 3560 | 20220 35m Tom Th18m | 2om Zm | 3hsm | 876 | 8907
python ObJeCtS [Tpu 70 0 23228 [ 613 4370 [ 1669 7 59m om Tn om $m | dhom [ 14G 9215G
Fe 11 05— 120 [ T 3 TS| S| 3m | Fsm | TG 005G |
mem ctrl | 115|152 131 1051 S081 [ 3022 T3m om Zim o om S5m | 746G 676G
pel Tz [ 207 [ ZTelz_[ 3220 10765 [ 3770 Tom Sm | Bm|  Bm | 8m | Thim | 15G 513G
sasc FT VR 1S 310 150 Zm Sm|  d5m|  Sm|  Sm|  3im | 18G| _0040G
[simple_spi | 16 12 1007 | 131 73 5311 Zm Sm| Tm|  Sm |  sm |  %m| 19G 337G
Spi T T 00T [ 729 63T [ 493 dm ] Sm [ Tem | Sm|  5m| m [ 3G [ 008G
pem g [ 7 Py Zm Sm] Tom | Sm | Sm |  3im | T6G 025G
Systemeaes | 260 i) 9565 70 5630 0 M em | Om | _em| _em | __@m | _7C 702G
[systemcdes | 152 5 7722 %0 1315 dm [ sm [  Tem | 5m Sm 37m | 246G 150G
W80 0] z 7197 1) 620 B Tm [ em | m | om om S5m | 51G 052G,
ush_Tunct | 128 7T Ta79% 0 7963 Tim om Tm [ 5
ush.| 5 It} [} 08 775 Tat 7 Sm Tom T7G | 0033G,
Ngated 5 09 T06017 | 17059 B[ 1203 TH%m [ 2im | 2h®m [ Th3m | Th2m | 7h2m | 160G | T7740G
wh_ 717715 Azl | 520 9% [ 1136 Zim om | fom| _ Sm | Gm| _ Som | 41G| __0325C
~Tomal T0R 20m | 2h52m | 11k 28m | 3h 49m | 3h47m | 32h 20m | 428G | 82.836G |

ﬁDI‘eX 1 P. Shrestha, A. Aversa, S. Phatharodom, and |. Savidis, "EDA-schema: A graph datamodel schema and open dataset for digital design automation," Proceedings of the ACM
UNIVERs1Ty  Great Lakes Symposium on VLSI (GLSVLSI), pp. -8, June 2024
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Generalized ML Flow — Problem Formulation

Problem ' - Formulation of the problem includes:
Formulation Metric to be predicted
| J
Initial phase of the prediction
Post-floorplan or post-placement
Network Final phase of the prediction
Architecture Post-routing

Appropriate graph representation
Whether the prediction is performed at graph level or node level

Model Training and Baseline metric
Evaluation

Serves as a reference for the evaluation of the effectiveness of the model

A

Feature Importance Ranking
Using Sensitivity Analysis

(ﬁ,DI'eX 1 P. Shrestha and |. Savidis, "EDA-ML: Graph representation learning framework for digital IC design automation," Proceedings of the International Symposium on Quality
UNIVERSITY Electronic Design (ISQED), pp. 241-246, April 2024
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Generalized ML Flow — Network Architecture

Problem - Generalized template of the network architecture
Formulation
‘ Input graph Encoder Linear Layers
+ .
Objective
Network Aonicat
- Application 1
Architecture Node fealures - Application 2
I N ooication’y

J

.
|
i
'
Model Training and !
i Convolution | ! Pooling
'
i
i
:

Numeric features-

-
|

Evaluation
Layer > Layer ! >
I

J | \
'
,,,,, !
'
Graph features

Feature Importance Ranking
Using Sensitivity Analysis

Dl.e}{e P. Shrestha and I. Savidis, "EDA-ML: Graph representation learning framework for digital IC design automation," Proceedings of the International Symposium on Quality
oNivETeST Ty  Electronic Design (ISQED), pp. 241-246, April 2024
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Generalized ML Flow — Model Evaluation & Feature Importance Ranking
Problem - Feature importance ranking
Formulation . .
Evaluate importance of a feature on a model by leaving one
feature out of each training run
N Primary features are identified that significantly influence the
ATchitactore accuracy of the model
Removing ineffective or redundant features based on sensitivity
3 analysis enhances model performance
Model Training and
Evaluation
. y :
Feature Importance Ranking
Using Sensitivity Analysis
P. Shrestha and |. Savidis, "EDA-ML: Graph representation learning framework for digital IC design automation," Proceedings of the International Symposium on Quality
Cﬁ!!?.? .eu{(.?\l Electronic Design (ISQED), pp. 241246, April 2024
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Applications

- Two distinct downstream metric prediction problems are used as case studies

Arrival Time Prediction Interconnect Parasitic Prediction

Problem For

Metric to predict (1)

Gate arrival time

Total interconnect capacitance

Initial phase (X)

Post logical synthesis

Post placement

Final phase ()

Post routing

Post routing

Graph rep @)

Timing path graph (TPG)

nterconnect graph (IG)

Network Architecture

Prediction level Node Tevel Graph Tevel
Baseline (M;) Post logical synthesis arrival time | Post placement total interconnect capacitance
Graph embedding layer GCN SGCN

Use of graph pooling

No Yes

Model Training and

Loss function (L)

Mean Squared Error Loss (MSE Loss)

Optimizer (O)

Stochastic Gradient Descent (SGD) [13]

Learning Rate (LR)

1%

Numeric Features (1)

& Drexel

Avrrival time prediction
network architecture

o . )
Details Batch Processing (B) Yes (1024 batches per iteration)
Evaluation metrics MAE, MAPE, worse 1% MAE, worse 1% MAPE
GCN Layers Linear Layers SGCN Layers Linear Layers

Graph Features (8) +
Numeric Features (1)

Interconnect parasitic prediction
network architecture

Timming path ({7 ° Interconnect [()
graph ) ) graph o
(| RelU (] () RelL
® ° PS Post Routing
° ° °
R o 15 - Fost Rowing i {-Total Interconnect
® b4 ° Capacitance
. ° 3
() (] O
o o L °
ninputs 17iputs  16inputs 16 inputs 16 inputs 16 inputs 16X 1 ninputs 25inputs  16inputs  16inputs  16inputs  16inputs 16X 1
16 outputs 16 outputs 16 outputs 16 outputs 16 outputs 16 outputs 16 outputs 16 outputs 16 outputs 16 outputs 16 outputs 16 outputs

P. Shrestha and I. Savidis, "EDA-ML: Graph representation learning framework for digital IC design automation," Proceedings of the International Symposium on Quality
Electronic Design (ISQED), pp. 241-246, April 2024

174




EDA-ML

a) arrival time prediction

Dataset Generation
(EDA-datagen)
- Design stage specific constraints

- Previous stage generated netlist
- Previous stage parasitics (optional)

Functional
Design

Logical Netiist
(verilog)

Logical Synthesis

o

=
H > Physical Netlist |~ >
, S

Floorplanning

Placement

Clock Network
Synthesis

Routing
gnof

g
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OpenROAD @
CircuitOps graph creation using OpenROAD DB APIs
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ML inference will be supported by callbacks from
CircuitOps/ML algorithm to OpenROAD
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OpenROAD as an ML for Chip Design Playground

<A NVIDIA.

CircuitOps: ML-friendly data representation format within OpenROAD

pandas.DataFrame features
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Outline of Presentation
] 1

- Introduction to Electronic Design Automation

~

~

- Machine learning techniques
- Case studies
- Standardizing ML for digital EDA

- Conclusions
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Summary of Al-driven Design Automation
;|

- ML applied to the design space can be generalized to a set of problems

Downstream Metric Prediction

. . . . . Design
Circuit component optimization Generation
. . . RTUNetlist to GDSII
Circuit component generation Pacement geerton
Routing generaon c
5118
. Key circuit representatjons Design Optimization/Improvement ; g
I b d Placement, CTS, Routing optimization E E
mage pase to optimize/improve 5 |9
8 Pachmentcol usienig - Cotx Sk cuterng 515
Graph based “lg
Tabular based Early Warning Metric

Timing Prediction (arival time, slack)
Parasitic impedance prediction _ Interconnect length prediction
IR drop prediction ~ Power (total, PDN, cell) prediction  Thermal profile prediction
Resynthesis prediction ~ Critical path identification ~ DRC violation prediction ~ Hotspot prediction

- Benefits brought by ML for EDA

Reduced simulations required, reduced turnaround time

Design space exploration

Prediction of parasitic impedances, reliability and variability

Guide optimization or direct generation of schematic and layout design
Migration and reuse of pre-trained models
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Future Directions

__________________________________________________________________§ |

- Improve reliability, robustness, and interpretability of ML models for EDA

- Standardized Machine Learning
Standardized benchmarks and applications
Standardized ML flow
Common evaluation protocols

- Meta-learning
Learning what to learn
Learn parameter values for base (pre-trained) models for circuit tasks
Learning which model to learn
Auto select the ML and optimization algorithms best suited for a given circuit task
Learning how to learn

Auto hyperparameter tuning of ML models and generation of pipeline for EDA
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Future Directions

- Open Datasets and Leaderboards

<. Hugging Face Models ' Datasets [ Spaces ® Posts © Docs Pricing =  Logl
m Sizes Sub-tasks Languages Licer ther Datasets Full-text search 14 Sort: Trending.
H-D-T/Buzz

Question Answering.

m-a-p/Matrix % Spaces @ open_11m_leaderboard © < I Running on CPU UPGRADE =
Depth Estimation {mage Classifcation % Open LLM Leaderboard
Object Detection Image Segmentation HOEELnEEScer/ Sinowed
Tedtoimage [ ImagetoText < LiMBenchmark W > 1rQ o
B Image-toimage Imageto-Video allenai/WildChat-1M
UnconditionalImage Generation
T 4 Model Average @3 4+ AR

Video Classification Textto-Video
TIGER-Lab/MMLU-PTo

Zero-Shot Image Classification devidkinog5TRheaz/ob=vo-E Il €22 &

Mask Generation Zero-Shot Object Detection 81 78
80.98 78
80.48 76
79.3 73
79.15 72
78.96 72
78.89 72
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Conclusions

T [

- EDA tools are like autonomous vehicles
Currently, driver control/attention is still required

- EDA tools are like autonomous vehicles to be driven in more challenging road conditions

Al / ML,
- Level of automation will keep rising Academia

- More collaborations needed between
circuit design, academia and industry

Improved tools; trained

(“private-label”) models
- ' [
“ e Designers
$$5$$
(ﬁ,DI'eX A. B. Kahng, “Machine Learning Applications in Physical Design: Recent Results and Directions”, Proceedings of the International Symposium on Physical Design
UNivErsiTy  (ISPD),pp.68-73,March 2018
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