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DREXEL UNIVERSITY - IOANNIS SAVIDIS GROUP

Degrees: B.S.E., Duke University
M.S., University of Rochester
Ph.D., University of Rochester (2013)

Research Interests
Analysis, modeling, and design methodologies for high performance digital and mixed-signal integrated circuits; Emerging integrated circuit 
technologies; Electrical and thermal modeling and characterization, signal and power integrity, and power and clock delivery for 3-D IC 
technologies; hardware security (obfuscation and side-channel analysis); algorithms and methodologies for design automation including ML/AI 
based optimization; On-chip power management; Low-power circuit techniques;  Algorithms and methodologies for secure IC design

LABORATORY & TEAM
• Eight Ph.D. students

- Alec Aversa – Sequential digital circuit obfuscation
- Saran Phatharodom – Digital obfuscation metrics
- Jeff Wu – Application of ML/AI to analog/RF IC design 
- Ziyi Chen – Analog IP protection
- Ashish Sharma – Heterogeneous circuit integration
- Pratik Shrestha – Digital security and application of ML/AI to digital IC design
- Nnaemeka Achebe – Application of ML to RF design
- Amit Varde – EDA foundational modeling, ML based analog design

• One M.S. student
• David Binder – dataset generation for digital IC ML/AI EDA problems

• 2,000 square feet of dedicated research space
• Access to leading CAD software packages: Cadence (Virtuoso, Innovus, Assura, Quantus, Genus, etc.), 

Synopsys (FusionCompiler, PrimeTime, Hspice, Taurus, etc.), and Siemens Mentor Graphics (Calibre)
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ICE Research:

• Text
• Text
• Text

- Real time Trojan detection
- FPGA security and IP protection

- Detection of hardware Trojans
- Real time side-channel 

monitoring
- Attack prevention with trusted design

- Metrics to quantify security
- Algorithms and methodologies to 

obfuscate digital circuits
- Protection of analog circuits

- Circuit redaction using field 
programmable analog arrays

- Key-based parameter obfuscation
- Heterogeneous IC security 

(chiplet/3D)
- Trojan detection
- Side-channel analysis
- Secure multi-plane 

communication

Objective:
Secure Heterogeneously 

Integrated Circuits and Systems 
for Edge Compute

Heterogeneous & Reconfigurable Integration 
for Edge Compute

-Near-threshold circuits (NTC) 
for low-power applications

- Implement circuit 
families including CMOS 
and current mode logic in 
NTC

-Leakage reuse for multi-voltage 
domain systems
-Energy efficient heterogeneous 
DNN accelerators
-Power management for multi-
domain delivery

- 3-D/VLSI design methodologies 
for power and clock network 
design

- Multi-plane power noise 
modeling

- Methodologies to mitigate 
cross-plane coupling

- Power management for multi-
domain, multi-plane delivery

- Clock tree synthesis for 
heterogeneous device planes

- Multi-physics modeling of 
electro-thermal-mechanical 
characteristics of 3-D ICs

- Test vehicle design and 
characterization (three fabricated 
and tested ICs)

Hardware Security & Trust

- Applied algorithms for clock 
tree synthesis 

- ML/AI algorithms for analog 
transistor sizing

- Classification with 
adaptive labeling

- SMT based optimization of 
transistor sizing

- Graph based representation of 
circuit netlist

- EDA-Learn: framework for 
circuit data generation and ML 
modeling

Heterogeneous Chiplet 
and 3-D Integration

Low Power IC Design ML/AI Circuit DesignPower Management
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• Introduction to Electronic Design Automation

• Machine learning techniques

• Case studies

• Standardizing ML for digital EDA

• Conclusions

Outline of Presentation
6
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Background: Electronic Design Automation (EDA)
8

MANUFACTURING CHECK

APPLICATION SOFTWARE

SIMULATION

DESIGN VERIFICATION

• EDA: a system of software solutions for the design of integrated circuits
• A wide range of applications:
• High-performance Computing

• Autonomous vehicle
• IoT
• AI
• ...

• Primary Tools/Applications:

8

IC Design Cycle
10

• Divided into three phases
• Conceptual design:

requirement definition, high-level structural outlining, and functionality design
• Design implementation:

translation of conceptual design into a logical representation and then a physical layout
• Production and validation:

physical fabrication, packaging, and testing

• Design implementation phase has the highest scope of automation

10
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Digital IC Design Automation Flow

• RTL-to-GDSII flow
• Frontend: technology independent standardized design descriptions

• Examples: VHDL, Verilog 

• Backend: physical implementation of circuits
• Fabs provide Process Development Toolkits (PDK) and simulation models for fab 

processes

11

11

Digital IC Design Automation Flow – Conceptual Design

• Functional Design using Hardware Description Language

• Logical Synthesis
o Convert hardware description language (HDL) into

technology (PDK) specific standard cells

o Translation + Mapping + Optimization

12
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Digital IC Design Automation Flow – Design Implementation

• Functional Design using Hardware Description Language

• Logical Synthesis

• Physical Design
o Transform a technology mapped logical circuit into actual 

layout to be fabricated
o Optimize placement of cells and interconnections to optimize 

performance, power, and area constraints

13

13

Digital IC Design Automation Flow – Design Adjustments

• Functional Design using Hardware Description Language

• Logical Synthesis

• Physical Design

• Verification and signoff
o Confirm circuit conforms with

power, performance, area budget
o Fix circuit if design requirements not met

14

14
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Overview of Heuristic Approaches for Design Synthesis
15

• Rule based (heuristics) + Optimization
o Time and resource expensive

• Example: Recursive Placement using "Min-Cut" Approach
o Rule based (heuristics): cut the circuit into 2 pieces, partition gates across the 2 sides

Continue executing recursively with resulting partitions of each step

o Optimization: minimize wiring between partitions
Provided each net has a cost cij, minimize total sum of costs of nets across cut

 minimize T = Σcut nets cij

15

Challenges of Digital IC Synthesis

• Complexity of design tasks

16

Source: en.wikipedia.org/wiki/Moore's_law

16
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Challenges of Digital IC Synthesis
17

• Complexity of design tasks

o Apple M3: 25 billion transistors

o Apple M3 Pro: 37 billion transistors

o Apple M3 Max: 92 billion transistors

• Complexity of computational 
platform
o SoCs with mixed-signal functionality

Source: www.apple.com/newsroom/2023/10/apple-unveils-m3-m3-pro-and-m3-max-the-most-advanced-chips-for-a-personal-computer
Source:  Die walkthrough: Alder Lake-S/P and a touch of Zen 3 (substack.com)

17

Challenges of Digital IC Synthesis

• Complexity of design tasks

• Technology node scaling challenges

18

Source: www.digitimes.com/news/a20200702PD200.html
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Challenges of Digital IC Synthesis

• Complexity of design tasks

• Technology node scaling challenges

• Iterative nature
• Optimal design requires multiple iterations

• Change in upstream parameters have
significant downstream effects

• Expensive design flow
• One iteration may take from

hours to days to complete

19

19

Machine Learning for EDA 
20

• Prediction
o Model the design space and predict circuit parameters
o Can we predict post placement wirelength before

placement?

• Optimization
o Improve on a circuit state or state of a circuit component
o Can we use previous placement knowledge to improve

current placed design?

• Generation
o Create a circuit component without any pre-existing state
o Can we generate a completely new placement solution?

20
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Machine Learning for EDA 
21

• Transfer Learning
� Reuse learned knowledge from previous designs

and nodes to accelerate model development
� Can we adapt pretrained models to new technologies

and designs with minimal fine-tuning?

• Large Language Models (LLM)
o Used across the pyramid to assist reasoning,

debugging, and flow steering throughout the
EDA design process

21

Interests in ML for EDA

• Papers mentioning design automation and machine learning

22
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• Introduction to Electronic Design Automation

• Machine learning techniques

• Case studies

• Standardizing ML for digital EDA

• Conclusions

Outline of Presentation
23

23

Families of Machine Learning Algorithms

• Train models to learn from data

• Leverage information from data to 
improve performance on prediction 
and generation tasks

• Diverse algorithm choices
• Based on application
• Based on complexity
• Based on data format

24

A. Moubayed, M. Injadat, A. B. Nassif, H. Lutfiyya and A. Shami, "E-Learning: Challenges and Research Opportunities Using Machine Learning & Data Analytics," IEEE 
Access, Vol. 6, No.1, pp. 39117-39138, July 2018

24
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Machine Learning for EDA 
25

• Prediction
o Model the design space and predict circuit parameters
o Can we predict post placement wirelength before placement?

• Optimization
o Improve on a circuit state or state of a circuit component
o Can we use previous placement knowledge to improve 

current placed design?

• Generation
o Create a circuit component without any pre-existing state
o Can we generate a completely new placement solution?

25

Regression

• Model the relationship between a dependent (target) variable and one or more 
independent (predictor) variables

Linear Regression
o A linear regression model is given by

where
o y  is the dependent variable
o xi  are independent variables
o βi  are coefficients
o ϵ  is the error term

o Coefficients are optimized by minimizing error between
actual value (y) and predicted value (ŷ) over multiple epochs

26

Source: keytodatascience.com

26
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Classification

• Categorize new, unseen data based on learning from a feature dataset with known labels

Logistic Regression
o Linear regression + logistic (sigmoid) function

o Linear regression backbone given by

o Activation with the Sigmoid Function
o Sigmoid function maps linear combination (y) to a (0,1) range
o Interpret Sigmoid function as the probability of the positive class

27

27

Machine Learning for EDA 
28

• Prediction
o Model the design space and predict circuit parameters
o Can we predict post placement wirelength before placement?
o Regression, Classification

• Optimization
o Improve on a circuit state or state of a circuit component
o Can we use previous placement knowledge to improve 

current placed design?

• Generation
o Create a circuit component without any pre-existing state
o Can we generate a completely new placement solution?

28
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Machine Learning for EDA 
29

• Prediction
o Model the design space and predict circuit parameters
o Can we predict post placement wirelength before placement?
o Regression, Classification

• Optimization
o Improve on a circuit state or state of a circuit component
o Can we use previous placement knowledge to improve 

current placed design?

• Generation
o Create a circuit component without any pre-existing state
o Can we generate a completely new placement solution?

29

Clustering

• Group sets of objects that are similar to each other in a cluster

K-Nearest Neighbor Algorithm
o Classify based on distance between new data
 point and k nearest known data points
o Distance metrics:

Euclidean distance, Manhattan distance,
Hamming distance ...

o Requires storage of all data
o 'Lazy learning'

o Advantages:
o Easy to implement and adapt
o Few hyperparameters

o Limitations:
o Does not scale well to large dataset with high dimensionality
o Bottleneck in memory

30

Source: dashee87.github.io

30



15

Optimization

• Aim to find the most efficient solution from a set of available options

Key Components
• Objective Function

• Goal of optimization

• Constraints
• Conditions that the solution must satisfy

• Global optima and local optima

• Searchable state space

31

31

Gradient-based Optimization Algorithms

• At each step, search direction is defined by the 
gradient of the objective function
o Intuitively, search along direction that reduces cost 

function at fastest rate
• Gradient descent

o First-order search of local optimum

• Advantages:
o Theoretical guarantee of optimality
o Fast execution for each iteration of search

• Limitations:
o Requires explicit differentiable functions
o Slow convergence and local minima for non-convex 

search space

32

Source:  Interactivechaos.com

𝜃! ≔ 𝜃! − 𝛼
∂

∂𝜃!
𝐽(𝜃", 𝜃#)

32
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Optimization Algorithms
33

• Gradient-based algorithms

• Heuristic/Classic algorithms
o Greedy algorithms
o Divide and conquer
o Dynamic programming
o Network flow algorithms
o Linear/integer programming
o Evolution-based algorithms
o Simulated annealing
o SAT

• Learning-based algorithms
o Reinforcement learning
o Surrogate-assisted optimization algorithms

K. Li, J. Malik, "Learning to optimize," Proceedings of the International Conference on Learning Representations (ICLR), pp. 1-13, April 2017

General flow of optimization process

33

Evolutionary Algorithms

• Characteristics of evolutionary algorithms  
o Population-Based
o Fitness-Oriented

o A fitness parameter to represent the quality of a solution
o Variation-Driven

o Crossover and mutation generates variants randomly

• Broad categories
o Genetic algorithm
o Particle swarm
o Differential evolution
o ...

34

General flow of evolutionary algorithms

34
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Simulated Annealing

• A global optimization technique by approximation
• Preferred when search space is discrete
• Parameter: a temperature value that keeps decreasing
o temperature=(initial temperature)/(iteration+1)

• Steps:
o Randomly initialize design variables and evaluate function value fold

o Sample again in the neighboring region and evaluate function value fnew

o Action:
o If function value improves, accept.
o If function value worsens, accept with probability

• Advantage:
o Reduces chance of getting stuck at local optimum since worse candidates are accepted with lower 

probability.

35

𝑒$(&!"#$&$%&)/)*+,*-.)/-*

35

Re-enforcement Learning

• Agent is trained to identify optimal strategies for decision-making in complex, uncertain 
environments to achieve its objectives.

• Key Components
o Agent: AI designer

o Environment: The world through which the
agent operates

o Action: All the possible actions the agent can execute

o State: The current conditions as reported by the environment

o Reward: An immediate feedback from the environment to evaluate the agent's last action

36

36
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Classical Machine Learning Applications

• Regression
o Linear Regression
o Lasso Regression (L1 Regularization)
o Ridge Regression (L2 Regularization)
o Bayesian Linear Regression

• Classification
o Logistic Regression
o Decision Trees
o Random Forest
o Support Vector Machines (SVM)
o Naive Bayes

• Clustering
� K-Means Clustering
� Mean Shift Clustering
� Spectral Clustering

37

• Optimization
o Gradient Descent
o Linear/integer programming
o Simulated Annealing
o Particle Swarm Optimization
o Ant Colony Optimization
o Evolution-based algorithms

o Genetic Algorithm

o Re-enforcement Learning
o Value Iteration
o Policy Iteration
o Q-Learning

37

Machine Learning for EDA 
38

• Prediction
o Model the design space and predict circuit parameters
o Can we predict post placement wirelength before placement?
o Regression, Classification

• Optimization
o Improve on a circuit state or state of a circuit component
o Can we use previous placement knowledge to improve 

current placed design?
o Clustering, Optimization (Gradient Descent,

Simulate Annealing, Re-enforcement Learning …)

• Generation
o Create a circuit component without any

pre-existing state
o Can we generate a completely new placement solution?

38
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Classical Machine Learning Applications

• Regression
o Linear Regression
o Lasso Regression (L1 Regularization)
o Ridge Regression (L2 Regularization)
o Bayesian Linear Regression

• Classification
o Logistic Regression
o Decision Trees
o Random Forest
o Support Vector Machines (SVM)
o Naive Bayes

• Clustering
� K-Means Clustering
� Mean Shift Clustering
� Spectral Clustering

39

• Optimization
� Gradient Descent
� Linear/integer programming
� Simulated Annealing
� Particle Swarm Optimization
� Ant Colony Optimization
� Evolution-based algorithms

� Genetic Algorithm

� Re-enforcement Learning
� Value Iteration
� Policy Iteration
� Q-Learning

Where are Neural Networks???

39

Machine Learning Progression: Classical ML vs Deep Neural Networks
40

40
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Machine Learning Progression: Classical ML vs Deep Neural Networks
41

41

Perceptron/Neuron vs Logistic Regression: They are the same!

• Deep neural network <-> a stacked network of neurons

• A neural network maps from input neurons to
output labels

• Each neuron performs logistic regression

• Each input neuron represents a piece of the data
(image pixel, transistor feature, net feature, ...)

• Works well for tabular data

42

Linear Regression Logistic Regression

Deep Neural Network

ℎ!,#(𝑥) 	= 𝑓(𝜔$𝑥 + 𝑏)

42
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Circuits as Images

1:08 AM

43

Image features

a) original image b) image in four different filters c) trail routing d) flip flops e) clock nets

• Images represent structural information of the IC
• Sub-components of circuit are isolated as different image representations

Y.-C. Lu, J. Lee, A. Agnesina, K. Samadi, and S. K. Lim. "GAN-CTS: A generative adversarial framework for clock tree prediction and optimization," Proceedings of the 
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 1-8, Nov. 2019.

43

Circuits as Graph Representations

1:08 AM

44

Netlist graph representation

Clock tree representation

• Structural information and connections are represented efficiently as compared to an image
• Node and edge attributes as feature-set allows for a richer representation
• Positional information is lost

Interconnect segment graph

Timing Path Graphs

44
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Spatial Graph Representations

1:08 AM

45

Spatial graph network

• Contains structural and attribute information of graphs as well as positional information

• Spatial graph ML are new frontiers of research

Spatial Interconnect Graph

45

Convolution: Beyond Numerical Data

• Convolutions
• Embed complex data structures into lower-dimensional vector representations
• Combines local information through a series of learnable filters or aggregation functions
• Embedded vectors can be used as inputs to a neural network

• Key data structures

• Images

• Graphs

46

Convolution

Vector
Representation

46



23

Convolutional Neural Network (CNN) Layer

• Operates on grid-like data structures where the data is represented in a structured, 
Euclidean space

• Each cell on the grid (pixel) is updated by the weighted sum of the current cell value and 
neighboring cell values

• Captures local patterns like edges, colors, and textures in the early layers, and more 
complex patterns (like parts of objects) in deeper layers

47

Source: analyticsvidhya.com

47

Graph Convolutional Neural Network (GCN) Layer

• Applied to graph-structured data, representing entities (nodes) and their relationships 
(edges) in a non-Euclidean space

• Key idea: Generate node embeddings based on local network neighborhoods
o Converts graph structures and attributes into vector representations
o Use CNN-like convolutional deep neural layers to train model

48

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip. "A comprehensive survey on graph neural networks," IEEE Transactions on Neural Networks and Learning 
Systems, Vol. 32, No. 1, pp. 4-24, Jan. 2020.

48
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Vanilla Graph Convolutional Neural Networks (GCN)

Three primary steps:
 1) Generate embeddings hi for each graph node i

o Map original feature vectors to vectors of a fixed dimension via linear neural network layers

Node embedding layers

49

49

Vanilla Graph Convolutional Neural Networks (GCN)

Three primary steps:
 1) Generate embeddings hi for each graph node i

o Map original feature vectors to vectors of a fixed dimension via linear neural network layers

 2) Aggregate embeddings of each node with embeddings of the neighboring nodes

Aggregation layersNode embedding layers

New embedding of node i Current embedding of node jNonlinear activation function
Weight vector

Index set of direct neighboring nodes of node i

Normalization coefficient

Bias vector

50

50
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Vanilla Graph Convolutional Neural Networks (GCN)

Three primary steps:
 1) Generate embeddings hi for each graph node i

o Map original feature vectors to vectors of a fixed dimension via linear neural network layers

    2) Aggregate embeddings of each node with embeddings of the neighboring nodes

    3) Send final embeddings to linear neural network layers for target predictions

Aggregation layersNode embedding layers Linear layers for prediction

New embedding of node i Current embedding of node jNonlinear activation function
Weight vector

Index set of direct neighboring nodes of node i

Normalization coefficient

Bias vector

51

51

Variants of Graph Neural Networks: GraphSAGE
52

J. K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How Powerful are Graph Neural Networks?,” Proceedings of the International Conference on Learning Representations 
(ICLR),  pp. 1–17, Dec 2018

• GraphSAGE (Graph Sample and AggreGatE)

• Extends the idea of GCN by allowing for inductive learning
• Generalizes to unseen nodes after being trained only on a subset of the graph

• Introduces a sampling technique to reduce the computational load
• Instead of using all neighbor nodes, GraphSAGE samples a fixed number of neighbors and 

aggregates features from those neighbors
• More scalable and applicable to large or dynamic graphs

• Supports different types of aggregation functions
• Mean pooling, max pooling

52
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Variants of Graph Neural Networks: SGCN

• Leverages node position

• Generalization of both GCNs and CNNs

53

T. Danel, P. Spurek, J. Tabor, M.  ́Smieja, Ł. Struski, A. Słowik, and Ł. Maziarka, “Spatial graph convolutional networks,” Proceedings of the International Conference on 
Neural Information Processing (NIPS), pp. 668–675, Nov. 2020

Node co-ordinates

Normal GCN

Spatial GCN

Comparison of different neural convolutional filters. Each color denotes different 
trainable weights
(a) Depicts convolutional filters for images
(b) Depicts spatial graph convolutions, and
(c) Depicts graph convolutions

(a) CNN  (b) SGCN (c) GCN

53

Multi-model Networks

• Integrate multiple types of data or modes 
(e.g., text, images, sound) into a single model

• Captures complex interactions not available 
from any single data type alone

54

54



27

Machine Learning for EDA 
55

• Prediction
o Model the design space and predict circuit parameters
o Can we predict post placement wirelength before placement?
o Regression, Classification, Clustering

• Optimization
o Improve on a circuit state or state of a circuit component
o Can we use previous placement knowledge to improve 

current placed design?
o Clustering, Optimization (Gradient Descent,

Simulate Annealing, Re-enforcement Learning …)

• Generation
o Create a circuit component without any

pre-existing state
o Can we generate a completely new placement solution?
o RL/Generative ML

55

Generative Adversarial Networks

• Discriminator: 

• Generator objective function: 

• Variants of GANs differ in objective function
• Suitable for prototype circuit design (layout) generation

56

recognize real data recognize generated data 

optimize to fool discriminator

max𝑉 𝐷 =𝔼0~,&'('(0) 𝑙𝑜𝑔𝐷 𝑥 + 𝔼2~,)(2)[log(1 − 𝐷 𝐺(𝑧) )]

min𝑉 𝐺 =𝔼2~,)(2)[log(1 − 𝐷 𝐺(𝑧) )]

I. Goodfellow, et al., "Generative Adversarial Nets", Proceedings of the International Conference on Neural Information Processing System (NIPS), Vol. 2, No.1, pp.2672-
2680, Dec. 2014
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Variational Auto-Encoders (VAEs)

• Generative algorithm to encode distribution of 
training data, then generate new data with 
similar distribution

• Encoder: map input to a low-dimensional 
latent space
o Effectively dimensionality reduction

• Decoder: convert signal in latent space back to 
input space

• Difference from GAN:
o GAN generator takes noise as input

o Higher-quality generation
o Harder to train

o VAE takes signal from the low-dimensional 
latent space as input
o Lower-quality generation
o Easier to train

57

D. Kingma and M. Welling, "Auto-Encoding Variational Bayes," Proceedings of the International Conference on Learning Representations (ICLR), pp.1-14, Nov 2013

Latent Space DecoderEncoder

57

Large Language Models

• Transformer LLMs are next-token predictors
o given a prefix text → model estimates probability distribution over possible next tokens
o Model encodes prefix tokens → internal latent representation → then decoder + language modeling 

head selects the next token
o Generation = repeating this step autoregressively token by token to build full output sequence

58

Source: web.stanford.edu/~jurafsky/slp3/slides/LLM24aug.pdf
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LLMs across the years

• rapid scale increases (parameters + data + compute) has driven major capability jumps
• transition from simple text completion → reasoning-capable general foundation models
• current frontier models now outperform prior generations across law, STEM, medical, and 

standardized academic exam

59

S Mohamadi, G Mujtaba, N Le, G Doretto, DA. Adjeroh, "ChatGPT in the Age of Generative AI and Large Language Models: A Concise Survey", arXiv preprint 
arXiv:2307.04251, pp.1-60, July 2023
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• Introduction to Electronic Design Automation

• Machine learning techniques

• Case studies

• Standardizing ML for digital EDA

• Conclusions

Outline of Presentation
60
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Case Studies

Case Study 1: Prediction of Downstream Circuit Metrics in Physical Design
• Timing Prediction, Interconnect Parasitic Prediction, Power Prediction

Case Study 2: Generation and Optimization of Circuits
• Automated Placement, Clock Network Synthesis, Routing

Case Study 3: Transfer Learning Approaches

Case Study 4: Large Language Models in Physical Design
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Case Studies

Case Study 1: Prediction of Downstream Circuit Metrics in Physical Design
• Timing Prediction, Interconnect Parasitic Prediction, Power Prediction

Case Study 2: Generation and Optimization of Circuits
• Automated Placement, Clock Network Synthesis, Routing

Case Study 3: Transfer Learning Approaches

Case Study 4: Large Language Models in Physical Design
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• Can machine learning be used to predict
downstream performance metrics?
• Using information available in initial phase X 

predict the performance metric P in final phase Y

• Can the predictions be used as an
early warning system?

Case Study 1: Prediction of Downstream Circuit Metrics in Physical Design

1:08 AM

63

64

Objective
• Predict the timing profile (arrival time, slack, critical path...)

of the downstream stages of the physical design flow using
the current stage

• Early and accurate prediction allows for pre-emptive timing 
optimization, reducing the need for costly iterations

• Improves circuit performance by identifying critical paths

• Minimizes design and verification costs and reduces the gap 
between estimated and actual timing

Problem 1: Timing Profile Prediction

1:08 AM

Arrival
Time
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• Predict post-detailed routing wire delays and wire slews using post-global routing 
information

• Problem Formulation
• Problem Type: Regression
• Initial phase: Post global routing
• Final phase: Post detailed routing

• Dataset
• Circuits: Open-source designs
• PDK: Open-source 45 nm and 130 nm
• Toolset: OpenROAD

65

Post Global Route to Detail Route Timing Prediction

1:08 AMV. A. Chhabria, W. Jiang, A. B. Kahng and S. S. Sapatnekar, “From Global Route to Detailed Route: ML for Fast and Accurate Wire Parasitics and Timing 
Prediction,” Proceedings of the ACM/IEEE Workshop on Machine Learning for CAD (MLCAD), pp. 7–14, Sept. 2022.
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• Feature set (numeric)
• HPWL
• Number of sinks
• Slew at the driving point
• Congestion estimates
• Rise and fall transitions
• Source to sink length
• Sources to sink R and C

• Model Architecture:
Three XGBoost models (classical ML)
• Source-sink wire delay prediction mode
• Source-sink wire slew prediction model
• π-model parameter prediction model

Post Global Route to Detail Route Timing Prediction

1:08 AMV. A. Chhabria, W. Jiang, A. B. Kahng and S. S. Sapatnekar, “From Global Route to Detailed Route: ML for Fast and Accurate Wire Parasitics and Timing 
Prediction,” Proceedings of the ACM/IEEE Workshop on Machine Learning for CAD (MLCAD), pp. 7–14, Sept. 2022.

66



33

67

• Feature set (numeric)
• HPWL
• Number of sinks
• Slew at the driving point
• Congestion estimates
• Rise and fall transitions
• Source to sink length
• Sources to sink R and C

• Model Architecture:
Three XGBoost models (classical ML)
• Source-sink wire delay prediction mode
• Source-sink wire slew prediction model
• π-model parameter prediction model

Post Global Route to Detail Route Timing Prediction

1:08 AMV. A. Chhabria, W. Jiang, A. B. Kahng and S. S. Sapatnekar, “From Global Route to Detailed Route: ML for Fast and Accurate Wire Parasitics and Timing 
Prediction,” Proceedings of the ACM/IEEE Workshop on Machine Learning for CAD (MLCAD), pp. 7–14, Sept. 2022.
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Arrival Time Prediction Framework

1:08 AM

• Graph convolution based arrival time prediction
o Initial Stage: Floorplan, Placement, CTS
o Final Stage: Routing

P. Shrestha, S. Phatharodom, and I. Savidis, “Graph representation learning for gate arrival time prediction,” Proceedings of the ACM/IEEE Workshop on Machine Learning for 
CAD (MLCAD), pp. 127–133, Sept. 2022.
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• Generate physical design data for each design stage
• Multiple data files generated: Verilog file, DEF file, timing reports, SPEF file

Arrival Time Prediction Framework: Dataset Generation

1:08 AM

Dataset constraints and parameters

ISCAS'89 benchmark circuits

P. Shrestha, S. Phatharodom, and I. Savidis, “Graph representation learning for gate arrival time prediction,” Proceedings of the ACM/IEEE Workshop on Machine Learning for 
CAD (MLCAD), pp. 127–133, Sept. 2022.
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• Utilize netlist and timing path reports
• Convert into directed graphs
• Populate with node features

Arrival Time Prediction Framework: Graph Representation

1:08 AM

Fig: Netlist graph representation Fig: Timing Path Graphs

Node features of timing path graphs

P. Shrestha, S. Phatharodom, and I. Savidis, “Graph representation learning for gate arrival time prediction,” Proceedings of the ACM/IEEE Workshop on Machine Learning for 
CAD (MLCAD), pp. 127–133, Sept. 2022.
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Arrival Time Prediction Framework: Model Training

1:08 AM

Deep GCN Network

Wide and Deep GCN Network

• Graph convolutional layers for graph embedding
• Feed forward layers for network depth

P. Shrestha, S. Phatharodom, and I. Savidis, “Graph representation learning for gate arrival time prediction,” Proceedings of the ACM/IEEE Workshop on Machine Learning for 
CAD (MLCAD), pp. 127–133, Sept. 2022.
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• Wide and deep GCN
• Outperforms the baseline for all 

scenarios except for CTS to routing 
timing estimate 

• Outperforms the baseline for CTS to 
routing timing estimate of small and 
medium circuits

• Outperforms linear regression except 
for floorplan to routing timing estimate 
of large circuits

• Due to minimal changes in the 
timing paths after CTS, CTS to 
routing results in the best baseline 
performance 
• Hard to improve on result provided by 

tool post-CTS

Results

1:08 AM

MAPE and MAE comparisons

P. Shrestha, S. Phatharodom, and I. Savidis, “Graph representation learning for gate arrival time prediction,” Proceedings of the ACM/IEEE Workshop on Machine Learning for 
CAD (MLCAD), pp. 127–133, Sept. 2022.
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1:08 AM

MAPE and MAE comparisons

P. Shrestha, S. Phatharodom, and I. Savidis, “Graph representation learning for gate arrival time prediction,” Proceedings of the ACM/IEEE Workshop on Machine Learning for 
CAD (MLCAD), pp. 127–133, Sept. 2022.
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1:08 AM

MAPE and MAE comparisons

P. Shrestha, S. Phatharodom, and I. Savidis, “Graph representation learning for gate arrival time prediction,” Proceedings of the ACM/IEEE Workshop on Machine Learning for 
CAD (MLCAD), pp. 127–133, Sept. 2022.
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• Wide and deep GCN
• Outperforms the baseline for all 
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timing estimate 
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routing timing estimate of small and 
medium circuits
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for floorplan to routing timing estimate 
of large circuits
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timing paths after CTS, CTS to 
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performance 
• Hard to improve on result provided by 
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Results

1:08 AM

MAPE and MAE comparisons

P. Shrestha, S. Phatharodom, and I. Savidis, “Graph representation learning for gate arrival time prediction,” Proceedings of the ACM/IEEE Workshop on Machine Learning for 
CAD (MLCAD), pp. 127–133, Sept. 2022.
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Problem 2: Interconnect Parasitic Impedance Prediction

• Interconnect impedance (R, L, C) are extracted after routing
o Big impact on circuit performance
o Need estimation of interconnect impedance at pre-routing design stages

• Early impedance used for estimation of circuit properties
o Reduce error between intermediate stages and final stage simulation results 

of other circuit performance parameters
o signal integrity
o power profile
o timing profile
o gain
o bandwidth
o ...

o Guide placement and routing

• Analytical models are not accurate enough
o Solution: apply ML

76
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A Machine Learning Based Parasitic Extraction Tool 

• Algorithm: regression
• Target circuit parameters for prediction: resistance, capacitance to ground, coupling, 

crossover, and cross-under capacitance of a net
• Training data is generated from Cadence Innovus with design of experiment (DOE)

o Not exclusively for analog but provides physical modeling of interconnect capacitances
• Regression function is fixed

o Only fitting regression parameters on data
o Example: coupling capacitance expression

o Inflexible to model interconnects at advanced technologies
• No results reported

77

G. Pradipta, V. A. Chhabria, and S. S. Sapatnekar, "A Machine Learning Based Parasitic Extraction Tool," Workshop on Open-Source EDA Technology (WOSET), pp. 1–3, Nov. 
2019
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ParaGraph: Layout Parasitics and Device Parameter Prediction with GNNs

• Graph representation of a circuit
o Heterogeneous graph: devices and nets both as graph nodes
o Multiple sub-models for different capacitance ranges

• Transistor features:
o Gate poly length
o Number of fingers
o Number of fins
o Multiplier

78

H. Ren, G. F. Kokai, W. J. Turner and T. Ku. “ParaGraph: Layout Parasitics And Device Parameter Prediction Using Graph Neural Networks,” Proceedings of the 
ACM/IEEE Design Automation Conference (DAC), pp. 1–6, June 2020.
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ParaGraph: Layout Parasitics and Device Parameter Prediction with GNNs

• Simulation errors between pre-layout predictions and post-layout extracted values on 67 
circuit metrics in the testing circuits

• GCN-based model achieves an average prediction R2 of 0.772 (110% better than 
XGBoost)

• Average simulation errors from over 100% with designer’s estimation to less than 10%

79

H. Ren, G. F. Kokai, W. J. Turner and T. Ku. “ParaGraph: Layout Parasitics And Device Parameter Prediction Using Graph Neural Networks,” Proceedings of the 
ACM/IEEE Design Automation Conference (DAC), pp. 1–6, June 2020.

79

80

Digital Parasitic Prediction Framework

1:08 AM

• Objective
• Train GNN models for estimation of parasitic values on interconnect segments
• Predict post routing capacitance using post placement circuit features

P. Shrestha and I. Savidis, "Graph Representation Learning for Parasitic Impedance Prediction of the Interconnect" Proceedings of the IEEE International Symposium on Circuits 
and Systems (ISCAS), pp. 1–5, May 2023.
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• Generate physical design data for each design stage
• Multiple data files generated: Verilog file, DEF file, SPEF file

Parasitic Prediction Framework: Dataset Generation

1:08 AMP. Shrestha and I. Savidis, "Graph Representation Learning for Parasitic Impedance Prediction of the Interconnect" Proceedings of the IEEE International Symposium on Circuits 
and Systems (ISCAS), pp. 1–5, May 2023.
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• Utilize netlist and SPEF reports
• Convert into interconnect spatial graphs
• Populate with node features

82

Parasitic Prediction Framework: Graph Representation

1:08 AMP. Shrestha and I. Savidis, "Graph Representation Learning for Parasitic Impedance Prediction of the Interconnect" Proceedings of the IEEE International Symposium on Circuits 
and Systems (ISCAS), pp. 1–5, May 2023.
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• Utilize Spatial GCN network model
• Train 6 models where for each model one of the circuits is for test and the rest form the train set
• Use mean square error (MSE) as loss optimization function

83

Parasitic Prediction Framework: Graph Representation

1:08 AM

SGCN Network

P. Shrestha and I. Savidis, "Graph Representation Learning for Parasitic Impedance Prediction of the Interconnect" Proceedings of the IEEE International Symposium on Circuits 
and Systems (ISCAS), pp. 1–5, May 2023.
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• Considering total error
• Model outperforms the baseline on average but 

not for all circuit scenarios

• Considering top 1% worse errors
• Model outperforms the baseline for all scenarios 

consistently

• Average improvements
• MAE: 5.33%
• Top 1% MAE: 14.31%
• MAPE: 23.39%
• Top 1% MAPE: 47.43%

• R2 across all models is consistent (> 0.95)

Results

1:08 AMP. Shrestha and I. Savidis, "Graph Representation Learning for Parasitic Impedance Prediction of the Interconnect" Proceedings of the IEEE International Symposium on Circuits 
and Systems (ISCAS), pp. 1–5, May 2023.
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• Considering MAE
• Proposed model underperforms for smaller 

capacitances and outperforms for larger capacitances

• Considering MAPE
• Proposed model outperforms the baseline consistently

• Large proportion of baseline error comes 
from nets with larger capacitance
• Model improving the MAE for larger nets is 

desirable

Results: interconnects distributed by capacitance range

1:08 AMP. Shrestha and I. Savidis, "Graph Representation Learning for Parasitic Impedance Prediction of the Interconnect" Proceedings of the IEEE International Symposium on Circuits 
and Systems (ISCAS), pp. 1–5, May 2023.

85

Analog Parasitic Prediction Framework

• Apply edge-weighted GNNs for 
estimation of interconnect capacitance
o Schematic level
o Post-placement level

• Post-placement model leverages 
coordinates of placed devices
o Euclidean distance between devices used 

as edge weights

86

Actual

Predicted

Net C to gnd=?
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Problem 3: Total Power Prediction

• Early power prediction influences placement and routing decisions

• Crucial for optimizing energy efficiency and ensuring thermal management in electronic devices

• Key factors influencing power consumption
o Static Power: Power consumed when the device is inactive but powered on
o Dynamic Power:  Power consumed in response to circuit activity

 Mainly due to charging and discharging of capacitors

87
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• Predict total power at the end of physical design flow in early physical design (PD) stages

• Problem Formulation
• Problem Type: Regression
• Initial phase: Post placement
• Final phase: Post detailed routing

• Dataset
• Circuits:

o Two commercial CPU designs
o Five OpenCore circuits

• PDK: TSMC 28nm technology
• Toolset: Synopsys DC Compiler, ICC2 Compiler
• Parameters: 19 tool parameters influencing 

various physical design stages
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GNN + LSTM based Total Power Prediction

1:08 AMY.-C. Lu, W.-T. Chan, V. Khandelwal, and S. K. Lim, “Driving Early Physical Synthesis Exploration through End-of-Flow Total Power Prediction,” Proceedings of the ACM/IEEE 
Workshop on Machine Learning for CAD (MLCAD), pp. 97–102, Sept. 2022
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• Feature set
• Minimum, maximum slack
• Maximum transition of input/output pins
• Switching power of driving net
• Cell power (switching, internal, leakage)

• Model Architecture
• GNN for netlist representation learning
• Long Short Term Memory (LSTM) for sequential modeling of design stages

GNN + LSTM based Total Power Prediction

1:08 AMY.-C. Lu, W.-T. Chan, V. Khandelwal, and S. K. Lim, “Driving Early Physical Synthesis Exploration through End-of-Flow Total Power Prediction,” Proceedings of the ACM/IEEE 
Workshop on Machine Learning for CAD (MLCAD), pp. 97–102, Sept. 2022
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• Recurrent Neural Network (RNN)
• Encodes sequential data into vector representation
• Does not capture long term dependencies

• LSTM extends RNN
• Incorporates long-term memory components to

prioritize retaining certain hidden states over others.
• Special units (memory cells) maintain state over time

o Forget Gate:
Decides what information to discard from the cell state.

o Input Gate:
Determines which values from the input to update the cell state.

o Output Gate:
Controls the output and the next hidden state.

90

Long Short Term Memory (LSTM)

1:08 AMSource: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Sequential Neural Network
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• Recurrent Neural Network (RNN)
• Encodes sequential data into vector representation
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• Special units (memory cells) maintain state over time

o Forget Gate:
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o Input Gate:
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o Output Gate:
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Long Short Term Memory (LSTM)

1:08 AMSource: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNN

LSTM
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• Feature set
• Minimum, maximum slack
• Maximum transition of input/output pins
• Switching power of driving net
• Cell power (switching, internal, leakage)

• Model Architecture
• GNN for netlist representation learning
• LSTM for sequential modeling of design stages

GNN + LSTM based Total Power Prediction

1:08 AM

CC denotes the Pearson correlation coefficient.
NRMSE denotes the accuracy of the proposed model
All metrics are computed against ICC2 power values.

Y.-C. Lu, W.-T. Chan, V. Khandelwal, and S. K. Lim, “Driving Early Physical Synthesis Exploration through End-of-Flow Total Power Prediction,” Proceedings of the ACM/IEEE 
Workshop on Machine Learning for CAD (MLCAD), pp. 97–102, Sept. 2022
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Case Studies

Case Study 1: Prediction of Downstream Circuit Metrics in Physical Design
• Timing Prediction, Interconnect Parasitic Prediction, Power Prediction

Case Study 2: Generation and Optimization of Circuits
• Automated Placement, Clock Network Synthesis, Routing

Case Study 3: Transfer learning approaches

Case Study 4: Large Language Models in Physical Design

93
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• Design Optimization
• Given an initial circuit component state S, can we achieve a final circuit component state S' to 

improve the performance metric P of the said circuit component state?

• Generation vs Optimization
• Can previous-stage circuit component state act as the initial stage for design generation?

• ML for design optimization and generation
• Reinforcement learning
• Generative learning

Case Study 2: Design Optimization and Generation

1:08 AM
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Placement, CTS, and Routing for Digital Design

• Primary Objectives
o Performance Optimization: Tailoring chip layout to maximize circuit performance
o Power and Area Efficiency: Reducing power consumption and minimizing chip area, often through wirelength 

minimization
o Design Implementation: Ensuring the design is reliable, scalable, and completed within project timelines

• Design Rule Constraints
o Adhering to stringent design rules that govern the placement of circuit elements and routing to ensure 

manufacturability and functional integrity of the chip

• Additional Objectives
o Low congestion
o Thermal Management
o Noise Reduction

95
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• Optimize power, performance, and area (PPA) during circuit placement

• Graph based cell clustering
o Provide clusters as inputs to commercial placers

• Use post placement congestion, timing,
and power to optimize cluster

Digital Placement Optimization via PPA-Directed Graph Clustering

1:08 AMY.-C. Lu, T. Yang, S. K. Lim, and H. Ren, "Placement optimization via PPA-directed graph clustering", Proceedings of the ACM/IEEE Workshop on Machine Learning for CAD 
(MLCAD), pp. 1–6, Sept. 2022
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• Utilized netlist graphs of circuits
o Post-placement node-specific features with physical, timing, power attributes
o "Skip-connections" to aid GNN model in capturing timing-related attributes

Netlist Representation

1:08 AMY.-C. Lu, T. Yang, S. K. Lim, and H. Ren, "Placement optimization via PPA-directed graph clustering", Proceedings of the ACM/IEEE Workshop on Machine Learning for CAD 
(MLCAD), pp. 1–6, Sept. 2022
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• Generate graph embeddings using GraphSAGE
• Obtain initial cluster centroids/clustering assignments using K-means

Deep Graph Clustering

1:08 AMY.-C. Lu, T. Yang, S. K. Lim, and H. Ren, "Placement optimization via PPA-directed graph clustering", Proceedings of the ACM/IEEE Workshop on Machine Learning for CAD 
(MLCAD), pp. 1–6, Sept. 2022
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• Generate graph embeddings using GraphSAGE
• Obtain initial cluster centroids/clustering assignments using K-means

Deep Graph Clustering

1:08 AMY.-C. Lu, T. Yang, S. K. Lim, and H. Ren, "Placement optimization via PPA-directed graph clustering", Proceedings of the ACM/IEEE Workshop on Machine Learning for CAD 
(MLCAD), pp. 1–6, Sept. 2022
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• Generate graph embeddings using GraphSAGE
• Obtain initial cluster centroids/clustering assignments using K-means
• Optimize the cluster centroids/clustering assignments by minimizing loss functions

o Clustering loss: Kullback-Leibler divergence
o Congestion loss: maximizing Shannon entropy
o Power loss: minimizing entropy of maximum switching activities
o Timing loss: optimizing clustering of cells on critical timing paths
o Similarity loss: minimize embedding distance in high dimensions

Deep Graph Clustering

1:08 AMY.-C. Lu, T. Yang, S. K. Lim, and H. Ren, "Placement optimization via PPA-directed graph clustering", Proceedings of the ACM/IEEE Workshop on Machine Learning for CAD 
(MLCAD), pp. 1–6, Sept. 2022
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• PPA improvements for all benchmark circuits
o 2.2% improvement in power consumption
o 26% improvement in WNS
o 1.4% improvement in wirelength

• Lower number of DRC violations

Deep Graph Clustering: Results

1:08 AMY.-C. Lu, T. Yang, S. K. Lim, and H. Ren, "Placement optimization via PPA-directed graph clustering", Proceedings of the ACM/IEEE Workshop on Machine Learning for CAD 
(MLCAD), pp. 1–6, Sept. 2022
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• PPA improvements for all benchmark circuits
o 2.2% improvement in power consumption
o 26% improvement in WNS
o 1.4% improvement in wirelength

• Lower number of DRC violations
• Reduction of 60.9% in the

routing congestion of hotspot locations

Deep Graph Clustering: Results

1:08 AMY.-C. Lu, T. Yang, S. K. Lim, and H. Ren, "Placement optimization via PPA-directed graph clustering", Proceedings of the ACM/IEEE Workshop on Machine Learning for CAD 
(MLCAD), pp. 1–6, Sept. 2022
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Automated Cell Placement By Google 

• Primarily for digital cell placement optimization with RL and GNN
o Applications: design google accelerator chips (TPUs)

• RL for placing macros and heuristics to place standard cells
o RL reward: expected wirelength (i.e., HPWL) and expected congestion

• Edge-based GNN operate on embeddings of placed partial graph and candidate node

103

A. Mirhoseini, et al., "A Graph Placement Methodology for Fast Chip Design", Nature, No. 594, pp. 207–212, June 2021
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Deep Re-Enforcement Learning for Global Routing

• Problem Formulation
o Predict optimality of routing measured by overflow and 

minimization of total wire length
o Initial phase: Placement
o Final phase: Detailed routing
o Baseline: Sequential A* algorithm

• Files utilized for RL global routing  (Problem file)
o Specify the dimensions of the routing grid

(e.g., width, height, and layers)

• A Deep Q-network (DQN)

104

H. Liao, W. Zhang, X. Dong, B. Poczos, K. Shimada, & L. B. Kara, "A deep reinforcement learning approach for global routing." Journal of Mechanical Design, Vol. 142, 
No. 6, pp 061701, Nov. 2019.
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A* algorithm 

• Routing regions represented as a graph

• Find shortest path between a given node and a target node

• Given an initial and final cell on a square grid
o g : cost of moving from the initial cell to a certain cell on grid
o h : estimated cost of moving from the current cell to the final cell

§ Euclidean distance
§ Manhattan distance

o f = g + h
o Procedure: select and move to the smallest f-valued cell

• Limitation
o High space complexity as storage of all nodes in paths is required

105

Source: Wikipedia

A* search between bottom-left red 
dot to upper-right green dot

105

Deep Q-network (DQN) for Global Routing

• States Definition
o x, y, z coordinates representing the agent's current 

position within the routing grid
o State Updates

§ Location Update: Position of the routing agent
§ Capacity Adjustment: Wire utilization

106

H. Liao, W. Zhang, X. Dong, B. Poczos, K. Shimada, & L. B. Kara, "A deep reinforcement learning approach for global routing." Journal of Mechanical Design, Vol. 142, 
No. 6, pp 061701, Nov. 2019.
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Deep Q-network (DQN) for Global Routing

• States Definition
o x, y, z coordinates representing the agent's current 

position within the routing grid.
o State Updates

§ Location Update: Position of the routing agent
§ Capacity Adjustment: Wire utilization

• Network Architecture
o Comprises several fully connected layers
o Layers are followed by activation functions (ReLU)

• Reward Mechanism
o Overflow (OF) and Total Wire Length (WL)

107

H. Liao, W. Zhang, X. Dong, B. Poczos, K. Shimada, & L. B. Kara, "A deep reinforcement learning approach for global routing." Journal of Mechanical Design, Vol. 142, 
No. 6, pp 061701, Nov. 2019.
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• Problem Formulation
o Objective: Predict optimal CTS parameter setup for a commercial tool
o Baseline: Clock power, clock wirelength, and max skew of CTS 

generated on commercial tool's auto-setting
o Input data: Post-placement layout images

• Dataset Generation
o Toolset: Synopsys Design Compiler, Cadence Innovus
o PDK: TSMC 28nm
o No of CTS samples

o Per design: 5 * 7 * 100 = 3500
o Total dataset: 3500 * 7 = 24500

o Train/test split
o Training set: ARM, ECG, JPEG, LDPC, TATE
o Testing set: AES, NOVA

GAN-CTS: Generative Adversarial Learning for Clock Tree Optimization

1:08 AMReference: Y.-C. Lu, J. Lee, A. Agnesina, K. Samadi, and S. K. Lim, "GAN-CTS: A generative adversarial framework for clock tree prediction and optimization", Proceedings 
of the IEEE/ACM International Conference on Computer Aided Design (ICCAD), pp. 1–8, 2019
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• Use post-placement layout images to predict and optimize CTS parameters
• Consists of four separate models

GAN-CTS Framework

1:08 AMY.-C. Lu, J. Lee, A. Agnesina, K. Samadi, and S. K. Lim, "GAN-CTS: A generative adversarial framework for clock tree prediction and optimization," Proceedings of the 
IEEE/ACM International Conference on Computer Aided Design (ICCAD), pp. 1–8, Nov 2019
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• Use ResNet-50 (pre-trained deep image network) for feature extraction

GAN-CTS Framework: Placement Image Feature Extraction

1:08 AMY.-C. Lu, J. Lee, A. Agnesina, K. Samadi, and S. K. Lim, "GAN-CTS: A generative adversarial framework for clock tree prediction and optimization," Proceedings of the 
IEEE/ACM International Conference on Computer Aided Design (ICCAD), pp. 1–8, Nov 2019
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• Use ResNet-50 (pre-trained deep image network) for feature extraction
• Embed placement images into low dimensional vector embeddings

GAN-CTS Framework: Placement Image Feature Extraction

1:08 AMY.-C. Lu, J. Lee, A. Agnesina, K. Samadi, and S. K. Lim, "GAN-CTS: A generative adversarial framework for clock tree prediction and optimization," Proceedings of the 
IEEE/ACM International Conference on Computer Aided Design (ICCAD), pp. 1–8, Nov 2019
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• Use the extracted features and CTS parameters to predict for circuit properties
o Power consumption
o Wirelength
o Clock skew

GAN-CTS Framework: CTS Outcomes Prediction

1:08 AMY.-C. Lu, J. Lee, A. Agnesina, K. Samadi, and S. K. Lim, "GAN-CTS: A generative adversarial framework for clock tree prediction and optimization," Proceedings of the 
IEEE/ACM International Conference on Computer Aided Design (ICCAD), pp. 1–8, Nov 2019
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• Use Generative Adversarial Network to predict optimal CTS parameters
o Generator network proposes candidate CTS parameters
o Discriminator network tunes for the best candidate

GAN-CTS Framework: Generator/Discriminator

1:08 AMY.-C. Lu, J. Lee, A. Agnesina, K. Samadi, and S. K. Lim, "GAN-CTS: A generative adversarial framework for clock tree prediction and optimization," Proceedings of the 
IEEE/ACM International Conference on Computer Aided Design (ICCAD), pp. 1–8, Nov 2019
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• Clock trees generated by GAN-CTS have
more optimal clock power, skew, and wirelength
as compared to the commercial tool
o GAN-CTS provide improved metric scores

compared to the auto-generated clock trees

GAN-CTS Results

1:08 AMY.-C. Lu, J. Lee, A. Agnesina, K. Samadi, and S. K. Lim, "GAN-CTS: A generative adversarial framework for clock tree prediction and optimization," Proceedings of the 
IEEE/ACM International Conference on Computer Aided Design (ICCAD), pp. 1–8, Nov 2019
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• Clock trees generated by GAN-CTS have
more optimal clock power, skew, and wirelength
as compared to the commercial tool
o GAN-CTS provide improved metric scores

compared to the auto-generated clock trees

GAN-CTS Results

1:08 AMY.-C. Lu, J. Lee, A. Agnesina, K. Samadi, and S. K. Lim, "GAN-CTS: A generative adversarial framework for clock tree prediction and optimization," Proceedings of the 
IEEE/ACM International Conference on Computer Aided Design (ICCAD), pp. 1–8, Nov 2019
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• Clock trees generated by GAN-CTS have
more optimal clock power, skew, and wirelength
as compared to the commercial tool
o GAN-CTS provide improved metric scores

compared to the auto-generated clock trees

• Confusion matrix of the successful and failed
classification of the NOVA benchmark circuit by
Discriminator D
o Failure indicated a lower CTS metric score than

the auto-setting generated clock tree
o Accuracy: 0.947
o F1-score: 0.952

GAN-CTS Results

1:08 AMY.-C. Lu, J. Lee, A. Agnesina, K. Samadi, and S. K. Lim, "GAN-CTS: A generative adversarial framework for clock tree prediction and optimization," Proceedings of the 
IEEE/ACM International Conference on Computer Aided Design (ICCAD), pp. 1–8, Nov 2019
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ML-guided Analog Routing Approach: GeniousRoute

• Algorithm: Variational auto-encoders (VAEs) trained on layout images
o Encoder: map input image to low-dimensional space
o Decoder: generate routing guidance
o Label: routing region of nets

• Routing prediction: for a given placement, VAE predicts the probability map that a wire is 
placed in a region

• Routing algorithm: A∗ search algorithm guided by the trained VAE model
• Limitation: GeniusRoute is trained on a dataset consisting of comparators and amplifiers 

without generalizing to other analog circuit types

117

ground-truth

inference

K. Zhu. et al., "GeniusRoute: A New Analog Routing Paradigm Using Generative Neural Network Guidance," Proceedings of the IEEE/ACM International 
Conference on Computer-Aided Design (ICCAD), pp.1-8, Nov 2019
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Case Studies

Case Study 1: Prediction of Downstream Circuit Metrics in Physical Design
• Timing Prediction, Interconnect Parasitic Prediction, Power Prediction

Case Study 2: Generation and Optimization of Circuits
• Automated Placement, Clock Network Synthesis, Routing

Case Study 3: Transfer learning approaches

Case Study 4: Large Language Models in Physical Design

118

118
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Case Study 3: Transfer Learning for IC Design

• Transfer Learning involves applying knowledge gained from solving one problem and 
applying it to a different but related problem

• Key in accelerating the design process by leveraging pre-trained models

• Key Components
o Source Task: The original task where the model is trained
o Target Task: The new task where the model is applied
o Knowledge Transfer: The process of adapting the model from the source task to the target task

• Benefits of Transfer Learning
o Efficiency: Reduces computational resources and training time needed
o Performance: Enhances model performance especially when data on the target task is limited
o Versatility: Enables cross domain applications

119

119

Applications of Transfer Learning to IC Design
120

120
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• Develop a machine learning-based tool, Golden Timer eXtension (GTX), to correct discrepancies in 
various timing metrics between different signoff timing analysis tools

• Correlate path slack between given two signoff timing tools (T1 and T2) and a design tool (D1)
• Ensure consistency across tools
• Cross-tool validation
• Facilitate multi-vendor environments
• Adapt to advanced technology nodes
• Streamline collaboration and handoffs

• Precursor to model re-usability (transfer learning) across tools

121

Deep Learning Methodology to Model Golden Signoff Timing

1:08 AMS. S. Han, A. B. Kahng, S. Nath, & A. S. Vydyanathan, "A deep learning methodology to proliferate golden signoff timing," Proceedings of the Design, Automation & Test in 
Europe Conference & Exhibition (DATE), pp. 1–6, March 2014
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• Dataset
• PDK: 28nm FDSOI and 45nm GS foundry 

libraries

• Feature set (numeric)
• Capacitance (load, coupling, wire to ground)
• Wire resistance
• Cell slew (input, output)
• Delay (cell, wire, stage)
• Flip-flop setup time
• Path slack

Deep Learning Methodology to Model Golden Signoff Timing

1:08 AM

• Model Architecture
• Metric to Predict: Flip-flop setup time, cell arc 

delay, wire delay, stage delay, and path slack at 
timing endpoints

• Hierarchical models using Random Forest and 
SVM

• Model is "deep" because of the hierarchical 
approach

S. S. Han, A. B. Kahng, S. Nath, & A. S. Vydyanathan, "A deep learning methodology to proliferate golden signoff timing," Proceedings of the Design, Automation & Test in 
Europe Conference & Exhibition (DATE), pp. 1–6, March 2014
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• Dataset
• PDK: 28nm FDSOI and 45nm GS foundry 

libraries

• Feature set (numeric)
• Capacitance (load, coupling, wire to ground)
• Wire resistance
• Cell slew (input, output)
• Delay (cell, wire, stage)
• Flip-flop setup time
• Path slack

Deep Learning Methodology to Model Golden Signoff Timing

1:08 AM

• Model Architecture

• Results

Signoff timing tools (T1)
vs signoff timing tools (T2)

Signoff timing tools (T1)
vs design tool (D1)

S. S. Han, A. B. Kahng, S. Nath, & A. S. Vydyanathan, "A deep learning methodology to proliferate golden signoff timing," Proceedings of the Design, Automation & Test in 
Europe Conference & Exhibition (DATE), pp. 1–6, March 2014
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Transfer Learning with Domain Adaptation

• Freeze a variable number of layers of the 
prior model(s)

• Retrain with a smaller dataset in the 
target domain/node

124
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Transfer Learning for Arrival Time Prediction

• Transfer setup
o Source: 65 nm model
o Target: 28 nm transfer model
o Baseline: 28 nm model

• Dataset
� Circuits: Six IWLS'05 benchmark circuits
o PDK: Commercial 28 nm and 65 nm
o Toolset: Synopsys DC and ICC2 Compiler

125

• Modeling and Evaluation Scenarios
o Preliminary Scenario: Initial 65 nm model

o Generate data for 65 nm
o Train model for 65 nm

o Scenario I: 28 nm model
o Generate data for 28 nm
o Train model for 28 nm

o Scenario II: Predict 28 nm arrival times using 
the 65 nm model
o Infer on 28 nm
o No new dataset generation and training for 28 nm

o Scenario III: Transfer model (65 nm to 28 nm)
o Generate data for 28 nm
o Fine tune model using 28 nm data

P. Shrestha and I. Savidis, "Transfer Learning of Arrival Time Prediction Models from a 65 nm to a 28 nm Process Node," Proceedings of the IEEE Dallas Circuits and Systems 
Conference (DCAS), pp. 1–6, April 2024
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Transfer Learning Framework

1:08 AM

• Re-use of Dataset Generation and Graph Representation

P. Shrestha and I. Savidis, "Transfer Learning of Arrival Time Prediction Models from a 65 nm to a 28 nm Process Node," Proceedings of the IEEE Dallas Circuits and Systems 
Conference (DCAS), pp. 1–6, April 2024
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127

Transfer Learning Framework

1:08 AM

• Re-use of Dataset Generation and Graph Representation

Netlist graph representation Timing Path Graphs

Node features of timing path graphs

P. Shrestha and I. Savidis, "Transfer Learning of Arrival Time Prediction Models from a 65 nm to a 28 nm Process Node," Proceedings of the IEEE Dallas Circuits and Systems 
Conference (DCAS), pp. 1–6, April 2024
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Transfer Learning Framework

1:08 AM

• Re-use of Dataset Generation and Graph Representation
• Identical source and baseline models

Source Network

Baseline Network

P. Shrestha and I. Savidis, "Transfer Learning of Arrival Time Prediction Models from a 65 nm to a 28 nm Process Node," Proceedings of the IEEE Dallas Circuits and Systems 
Conference (DCAS), pp. 1–6, April 2024
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129

Transfer Learning Framework

1:08 AM

• Re-use of Dataset Generation and Graph Representation
• Identical source and baseline models
• Transfer tuned model

o Freeze all layers for 65 nm model
o Add transfer layer for 28 nm to fine tune

Fig: Transferred Network

P. Shrestha and I. Savidis, "Transfer Learning of Arrival Time Prediction Models from a 65 nm to a 28 nm Process Node," Proceedings of the IEEE Dallas Circuits and Systems 
Conference (DCAS), pp. 1–6, April 2024
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Transfer Learning Framework: Results

1:08 AM

Scenario I
(Baseline: Use of 28 nm)

Scenario II
(Direct Use of 65 nm)

Scenario III
(Transfer Model Fine-Tuning)

Model 
Performance

Lowest MAE, MAPE among scenarios 43.73% higher MAE, 42.69% higher 
MAPE compared to Scenario I

38.49% improvement in MAE, 28.16% 
improvement in MAPE compared to Scenario II

Time & 
Resources

Requires 4 hours and 23 minutes for data 
generation and training

No additional data generation or modeling 
required, time-efficient compared to Scenario I

Requires 1 hour and 25 minutes for dataset 
generation; 4 minutes for fine-tuning

Remarks Best model performance 
Worst time and resource investment

Worst model performance 
No time and resource investment

Medium model performance 
Medium time and resource investment

Expected vs Predicted Value:
Scenario I

Expected vs Predicted Value:
Scenario II

Expected vs Predicted Value:
Scenario III

P. Shrestha and I. Savidis, "Transfer Learning of Arrival Time Prediction Models from a 65 nm to a 28 nm Process Node," Proceedings of the IEEE Dallas Circuits and Systems 
Conference (DCAS), pp. 1–6, April 2024
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Transfer Performance Modeling Across Technology Nodes for the Same 
Circuit

• Transfer learning is applied on models trained in 180 nm for the performance 
modeling of an op-amp in 65 nm

• Transfer learning significantly improves the sample efficiency for circuit performance 
modeling with simulation-based sizing data
• Up to 50% improvement in MAE on test data

131

Z. Wu and I. Savidis, “Transfer Learning for Reuse of Analog Circuit Sizing Models Across Technology Nodes,” Proceedings of the IEEE International Symposium on Circuits and 
Systems (ISCAS), pp. 1–5, May 2022

131

Comparison of Sample Efficiency for Training of the Gain Predictor
132

• Standalone training requires 1000 
training samples to achieve test error 
of 0.076

• Transfer learning requires 100 samples 
to achieve test error of 0.07

0.14

0.12

0.10

0.08

Base     f=0       f=1       f=2       f=3      f=4      f=5       f=6

f: number of frozen layers

Z. Wu and I. Savidis, “Transfer Learning for Reuse of Analog Circuit Sizing Models Across Technology Nodes,” Proceedings of the IEEE International Symposium on Circuits and 
Systems (ISCAS), pp. 1–5, May 2022
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Case Studies

Case Study 1: Prediction of Downstream Circuit Metrics in Physical Design
• Timing Prediction, Interconnect Parasitic Prediction, Power Prediction

Case Study 2: Generation and Optimization of Circuits
• Automated Placement, Clock Network Synthesis, Routing

Case Study 3: Transfer learning approaches

Case Study 4: Large Language Models in Physical Design

133
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• EDA has diverse natural language artifacts encoding both intent and flow state:
o RTL + RTL comments + inline intent
o Constraints and design assumptions
o Engineering logs / tool diagnostics / reports (STA, P&R, DRC, IR, coverage)
o Documentation, bug trackers, internal notes
o Academic + industry publications / benchmarks

• These natural language sources are being used today for:
o chatbots / design assistants (ChipNeMo, ChatEDA, OpenROAD-Assistant)
o code + constraint generation (ChipGPT, BetterV, RTLLM, VeriGen)
o error explanation + debug triage (LLM-aided synthesis error explanation)
o spec extraction + semantic grounding (SpecLLM, AssertLLM)

Natural Language as a Modality in EDA

1:08 AM
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• Open benchmark for measuring functional correctness of LLM based Verilog generation 

• Curated benchmarks
• Benchmarks sourced from HDLBits

(widely used digital design learning platform)
• 156 Verilog tasks selected with clear specifications,

known reference implementations, and deterministic
simulation behavior

• Evaluation Process
• LLMs are prompted with each task to generate Verilog
• Generated Verilog is compiled + simulated under the

same test harness
• Correctness determined by functional simulation match
• Pass@k metric:

percentage of tasks where at least one of the top-k generated candidates simulates correctly

VerilogEval: Evaluating Large Language Models for Verilog Code Generation

1:08 AML. Mingjie, N. Pinckney, B. Khailany, and H. Ren, "Verilogeval: Evaluating large language models for verilog code generation," Proceedings of the IEEE/ACM International 
Conference on Computer Aided Design (ICCAD), pp. 1–8, Oct 2023

135

136

• Models compared 
• GPT-4, GPT-3.5, verilog-sft

• verilog-sft
• Take codegen-16B (open code LLM) and supervised fine tune it on Verilog prompt →

ground truth Verilog pairs (HDLBits style) 
• Teaches the model the correct mapping from spec → implementation in the HDL domain

• Evaluation Splits
• VerilogEval-machine: canonical HDLBits prompts
• VerilogEval-human: human-rephrased natural language versions of the same tasks

VerilogEval: Evaluating Large Language Models for Verilog Code Generation

1:08 AML. Mingjie, N. Pinckney, B. Khailany, and H. Ren, "Verilogeval: Evaluating large language models for verilog code generation," Proceedings of the IEEE/ACM International 
Conference on Computer Aided Design (ICCAD), pp. 1–8, Oct 2023

136

https://hdlbits.01xz.net/wiki/Problem%20sets
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137

• NVIDIA’s domain adapted large language model
o Base LLM Model:

start with huge generic internet scale pretraining → 
Llama2 foundation models (7B / 13B / 70B)

o Domain-Adaptive Pretraining (DAPT):
pretrain based LLM on domain-specific corpora
(EDA code, logs, specs) so it becomes fluent on the 
technical domain

o Model Alignment:
supervised fine-tune on domain instruction + task 
data so the model behaves like a chip design engineer

ChipNeMo: Domain-Adapted LLMs for Chip Design

1:08 AM

- DAPT = what the model knows (domain fluency)
- Alignment = how the model responds
(domain correct behavior)

L.  Mingjie, T.-D. Ene, R. Kirby, C. Cheng, N. Pinckney, R. Liang, J. Alben et al., "ChipNeMo: Domain-Adapted LLMs for Chip Design", preprint arXiv:2311.00176 , pp. 1–23, 
Apr 2024
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• Engineering Assistant Chatbot
o help designers reason about specs, flows, 

constraints, error conditions, and next-step 
actions in natural language

• EDA Tool Script Generation
o generate/modify tool scripts (Tcl, synthesis, P&R 

recipes, timing queries, etc.) for specific flows 
and tool semantics

• Bug Summarization & Analysis
o read logs, reports, regressions, failures
o produce summaries, diagnoses root-cause, and 

proposes next corrective actions

ChipNeMo Use cases

1:08 AML.  Mingjie, T.-D. Ene, R. Kirby, C. Cheng, N. Pinckney, R. Liang, J. Alben et al., "ChipNeMo: Domain-Adapted LLMs for Chip Design", preprint arXiv:2311.00176 , pp. 1–23, 
Apr 2024
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• Engineering Assistant Chatbot
o help designers reason about specs, flows, 

constraints, error conditions, and next-step 
actions in natural language

• EDA Tool Script Generation
o generate/modify tool scripts (Tcl, synthesis, P&R 

recipes, timing queries, etc.) for specific flows 
and tool semantics

• Bug Summarization & Analysis
o read logs, reports, regressions, failures
o produce summaries, diagnoses root-cause, and 

proposes next corrective actions

ChipNeMo Use cases

1:08 AML.  Mingjie, T.-D. Ene, R. Kirby, C. Cheng, N. Pinckney, R. Liang, J. Alben et al., "ChipNeMo: Domain-Adapted LLMs for Chip Design", preprint arXiv:2311.00176 , pp. 1–23, 
Apr 2024
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• Engineering Assistant Chatbot
o help designers reason about specs, flows, 

constraints, error conditions, and next-step 
actions in natural language

• EDA Tool Script Generation
o generate/modify tool scripts (Tcl, synthesis, P&R 

recipes, timing queries, etc.) for specific flows 
and tool semantics

• Bug Summarization & Analysis
o read logs, reports, regressions, failures
o produce summaries, diagnoses root-cause, and 

proposes next corrective actions

ChipNeMo Use cases

1:08 AML.  Mingjie, T.-D. Ene, R. Kirby, C. Cheng, N. Pinckney, R. Liang, J. Alben et al., "ChipNeMo: Domain-Adapted LLMs for Chip Design", preprint arXiv:2311.00176 , pp. 1–23, 
Apr 2024

140



70

141

• Engineering Assistant Chatbot
o help designers reason about specs, flows, 

constraints, error conditions, and next-step 
actions in natural language

• EDA Tool Script Generation
o generate/modify tool scripts (Tcl, synthesis, P&R 

recipes, timing queries, etc.) for specific flows 
and tool semantics

• Bug Summarization & Analysis
o read logs, reports, regressions, failures
o produce summaries, diagnoses root-cause, and 

proposes next corrective actions

ChipNeMo Use cases

1:08 AML.  Mingjie, T.-D. Ene, R. Kirby, C. Cheng, N. Pinckney, R. Liang, J. Alben et al., "ChipNeMo: Domain-Adapted LLMs for Chip Design", preprint arXiv:2311.00176 , pp. 1–23, 
Apr 2024
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ChipNeMo Benchmark Evaluation

1:08 AML.  Mingjie, T.-D. Ene, R. Kirby, C. Cheng, N. Pinckney, R. Liang, J. Alben et al., "ChipNeMo: Domain-Adapted LLMs for Chip Design", preprint arXiv:2311.00176 , pp. 1–23, 
Apr 2024

Task Benchmark Evaluation Measure Result Summary

Engineering 
Assistant 
Chatbot

88 engineering questions 
(Specs / Testbench / Build)

Likert scale: human raters score 
1 (poor) → 7 (excellent)

• Moderate, clear improvement from 
domain-adaptive pretraining

• Higher judged usefulness and 
correctness vs. base LLM

EDA Tool Script 
Generation

EDA tool scripting tasks 
across difficulty tiers

Pass@5 accuracy (success if any 
of top 5 answers is correct)

• Domain-adaptive pretraining 
delivered the largest lift

• Final ChipNeMo achieved ~20–
35% Pass@5 gains vs. base LLM

• Gains held across script evaluation 
categories

Bug 
Summarization  

and Analysis

Bug logs / regression 
failures / engineering 
failure reports

Human scoring + comparison 
against GPT-4 scoring baseline

• ChipNeMo slightly surpassed GPT-4 
on clarity and actionable debugging

• Domain adaptation consistently 
improved quality on this task
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• First comprehensive benchmark set for 
Verilog RTL design tasks, debugging, 
verification, assertions, and comprehension

• 783 human-authored problems across 13 
categories enabling broad testing coverage

• Supports both non-agentic and agentic 
evaluation with dockerized agents

CVDP: Comprehensive Verilog Design Problems Benchmark (2025)

1:08 AMN. Pinckney, C. Deng, C.-T. Ho, Y.-D. Tsai, M. Liu, W. Zhou, B. Khailany, and H. Ren, "Comprehensive Verilog Design Problems: A Next-Generation Benchmark Dataset 
for Evaluating Large Language Models and Agents on RTL Design and Verification.", arXiv preprint arXiv:2506.14074, pp. 1–16, Jun 2025
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• OpenROAD: A fully open-source physical design platform covering RTL-to-GDSII flow

• Objective: Fine tune a Retrieval Augmented Generation (RAG) model
o Understands physical design intent in natural language
o Generates correct, grounded OpenROAD physical design commands and scripts

• EDA Corpus used in RAG tuning
o OpenROAD documentation, OpenROAD API reference, OpenROAD example scripts/flows
o Hand curated PD examples + queries built around those APIs

OpenROAD-Assistant

1:08 AMU. Sharma, B.-Y. Wu, S. R. D. Kankipati, V. A. Chhabria, and A. Rovinski, "Openroad-assistant: An open-source large language model for physical design tasks.", In 
Proceedings of the ACM/IEEE International Symposium on Machine Learning for CAD (MLCAD), pp. 1–7, Sep 2024
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• Fine-tuning approach
o base model: Llama3-8B
o RAFT (Retrieval-Aware Fine Tuning) retrieval + SFT combined

• Retrieval-Aware Fine Tuning (RAFT)
o retrieved OpenROAD docs/APIs/script examples are

inserted into the model’s input during training
o model learns to ground generation on real OpenROAD

semantics (not hallucinated commands / flags)

• Supervised Fine Tuning (SFT)
o train on (retrieval context + NL prompt) → correct OpenROAD

script / answer pairs
o teaches exact mapping from natural language
→ valid physical design tool usage

OpenROAD-Assistant – Model Tuning

1:08 AMU. Sharma, B.-Y. Wu, S. R. D. Kankipati, V. A. Chhabria, and A. Rovinski, "Openroad-assistant: An open-source large language model for physical design tasks.", In 
Proceedings of the ACM/IEEE International Symposium on Machine Learning for CAD (MLCAD), pp. 1–7, Sep 2024

- RAFT teaches where the truth comes from

- SFT teaches how to generate the correct answer

using the truth.

145
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• Test Data: held-out OpenROAD PD tasks, scripts, and PD Q/A prompts derived from the 
OpenROAD EDA corpus.
o Script Adapter → generates OpenROAD Tcl PD scripts 
o Q/A Adapter → answers physical design questions in natural language 

• OpenROAD-Assistant is highest across both adapters:
o Script adapter: 23 correct pass@1 / 24 correct pass@3 out of possible 30
o Q/A adapter: highest BERTScore + BARTScore across Precision / Recall / F1 metrics
o frontier models (Claude3 / GPT-4 Omni / Llama3) fail on script correctness

Results

1:08 AMU. Sharma, B.-Y. Wu, S. R. D. Kankipati, V. A. Chhabria, and A. Rovinski, "Openroad-assistant: An open-source large language model for physical design tasks.", In 
Proceedings of the ACM/IEEE International Symposium on Machine Learning for CAD (MLCAD), pp. 1–7, Sep 2024
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• Introduction to Electronic Design Automation

• Machine learning techniques

• Case studies

• Standardizing ML for digital EDA

• Conclusions

Outline of Presentation
159

159

Challenges in ML for EDA: Lack of standardized dataset

• Absence of standardized, open datasets in physical design space is a significant barrier to 
the advancement and validation of machine learning models

• Key Issues

160

160
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Digital Synthesis Toolflows: Commercial Digital Synthesis Tools
161

Source: https://www.synopsys.com/implementation-and-signoff.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff.html

Toolset Synopsys Cadence
Logical Synthesis DC Compiler Genus

Physical Design IC Compiler, FusionCompiler Innovus

Signoff PrimeTime, StarRC, PrimePower, Formality ECO Tempus, Joules RTL, Conformal Low Power, Litmus

RTL Simulation VCS Xcelium

Circuit Simulation HSPICE, FineSim Spectre

Custom Design Custom Compiler Virtuoso

Verification Verdi JasperGold

Power Analysis PrimePower Voltus

DFT and Test DFTMAX, TetraMAX Modus

Yield Optimization Yield Explorer Yield Enhancer

Analog/Mixed-Signal Design CustomSim, Galaxy Custom Designer Spectre, Virtuoso AMS Designer

Process and Device Simulation Sentaurus (No direct equivalent)

161

Digital Synthesis Toolflow: OpenLANE

• Open source, open access

• OpenROAD for RTL-GDSII flow
o Rapid architecture and design space 

exploration
o Early prediction of QoR
o Detailed physical design implementation

162

M. Shalan and T. Edwards, "Building OpenLANE: A 130nm OpenROAD-based Tapeout-Proven Flow", Proceedings of the IEEE/ACM International Conference on Computer Aided 
Design (ICCAD), pp. 1–8, Nov 2020

162

https://www.synopsys.com/implementation-and-signoff.html
https://www.synopsys.com/implementation-and-signoff.html
https://www.synopsys.com/implementation-and-signoff.html
https://www.synopsys.com/implementation-and-signoff.html
https://www.synopsys.com/implementation-and-signoff.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff.html
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• Closed PDKs
o TSMC 16nm/28nm/65nm
o Global Foundries 22nm/130nm
o Intel 16nm

• Open Source PDKs
o Skywater 130 nm
o IHP 130 nm
o ASAP 7 nm
o Global Foundries 180 nm
o Nangate 45 nm
o ICSprout 55 nm

Comparison of Digital Synthesis Platforms
163

Open 
source/softwa

re?

PDK Support Cost of use 3D 
Integration

Purpose Silicon 
Proven?

Synopsys No High Paid Yes Commerical Yes

Cadence No High Paid Yes Commerical Yes

OpenLANE Yes Low Free No Academic Yes

163

Standardized Training and Evaluation Protocols in ML for EDA

• Opportunities for Improvement

164

164
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End-to-End Machine Learning for EDA

• Dataset modeling and benchmarking
o Standardized dataset and data models
o Metric of coverage, generalization
o Benchmarks on common problems and models

• ML modelling and training framework
o Feature engineering pipeline
o Modeling architecture

(GNNs, autoencoders, multi-modal, etc.)
o Evaluation scheme
o Hyper parameter tuning
o Feature importance

• Application space
o Leaderboard

• Vision/hope: open repository with production ready designs that are encrypted and secured 
but allow for ML design research by the community

165

165

• Data generation, representation, ML framework

• EDA-datagen
• Physical design flow automation for parameterized

large scale dataset generation
• Run EDA tools to generate designs with public benchmarks
• Toolboxes:

• Parsers for standard formats of design files
• Python interfaces

• EDA-schema
• Property graph data-model schema for

circuit data representation

• EDA-ML
• Rapid prototyping and evaluation for

EDA based machine learning models

EDA-learn

1:08 AM

166

Graph data Tabular data

166
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• Standardized format of representing circuits

• Property graph data-model schema incorporates circuit information

• Structural data of the circuit

• Performance metrics from reports

EDA-schema

1:08 AM

167

Physical design automation flow and corresponding netlist and 
circuit data formats

Circuit

Netlist Graph

Timing Path Graph

Interconnect Graph

P. Shrestha, A. Aversa, S. Phatharodom, and I. Savidis, "EDA-schema: A graph datamodel schema and open dataset for digital design automation," Proceedings of the ACM 
Great Lakes Symposium on VLSI (GLSVLSI), pp. 1–8, June 2024

167

EDA-schema: Entity Relationship Diagram

1:08 AM

168

• Key components

• Netlist

• Clock Tree

• Timing Path

• Interconnect

• Features after each
design phase
• Floorplan

• Placement

• CTS

• Routing

P. Shrestha, A. Aversa, S. Phatharodom, and I. Savidis, "EDA-schema: A graph datamodel schema and open dataset for digital design automation," Proceedings of the ACM 
Great Lakes Symposium on VLSI (GLSVLSI), pp. 1–8, June 2024

168
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EDA-schema: Feature Analysis

1:08 AM

169

• Features used for machine learning driven circuit prediction problems in prior work.

Objective/Paper Available Feature Set

placement parameter optimization [R1] no. of cells, no. of nets, no. of IOs, no. of nets with fanout ≤ 10, no. of flip-flops,
total cell area, no. of macros, macro area

pre-placement net length estimation [R2] net's driver's area, fan-in and fan-out size

total design power prediction [R3] minimum /maximum slack, worst input/output transition, switching power of driving net,
cell switching power, cell internal power, cell leakage power

pre-routing timing prediction [R4] driver and sink capacitance, sink locations, distance between driver and the target sink,
max driver input transition

arrival time prediction [R5] standard cell functionality, logic level, no. of fan-out, gate delay, interconnect capacitance, 
arrival time

interconnect parasitic prediction [R6] interconnect capacitance, interconnect length, interconnect position, pin density, net density

wire parasitics and timing prediction [R7] half perimeter wire length (HPWL), no. of sinks, congestion estimates, rise transition,
fall transitions, interconnect length, interconnect RC

Reference:
[R1] A. Agnesina, K. Chang, and S. K. Lim, “VLSI placement parameter optimization using deep reinforcement learning,” Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 1–9, 
Nov. 2020.
[R2] Z. Xie, R. Liang, X. Xu, J. Hu, Y. Duan, and Y. Chen, “Net2: A graph attention network method customized for pre-placement net length estimation,” Proceedings of the Asia and South Pacific Design Automation 
Conference (ASPDAC), pp. 671–677, Jan. 2021.
[R3] Y.-C. Lu, W.-T. Chan, V. Khandelwal, and S. K. Lim, “Driving early physical synthesis exploration through end-of-flow total power prediction,” Proceedings of the ACM/IEEE Workshop on Machine Learning for CAD  
(MLCAD), pp. 97–102, Sept. 2022.
[R4] E. C. Barboza, N. Shukla, Y. Chen, and J. Hu, “Machine learning-based pre-routing timing prediction with reduced pessimism,” Proceedings of the Design Automation Conference (DAC), pp. 1–6, Jun. 2019.
[R5] P. Shrestha, S. Phatharodom, and I. Savidis, “Graph representation learning for gate arrival time prediction,” Proceedings of the ACM/IEEE Workshop on Machine Learning for CAD  (MLCAD), pp. 127–133, Sept. 2022.
[R6] P. Shrestha and I. Savidis, “Graph representation learning for parasitic impedance prediction of the interconnect,” Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5, May 2023.
[R7] V. A. Chhabria, W. Jiang, A. B. Kahng, and S. S. Sapatnekar, “From global route to detailed route: ML for fast and accurate wire parasitics and timing prediction,” Proceedings of the ACM/IEEE Workshop on Machine 
Learning for CAD (MLCAD), pp. 7–14, Sept. 2022.

169

• Open Dataset

• Designs: 20 IWLS'05 benchmark circuits

• PDK: Skywater 130nm

• Design Toolset: OpenROAD

• Setup parameters

• Data generated is parsed
and mapped into
EDA-schema as
python objects

Standardized Dataset

1:08 AM

170

IWLS’05 benchmark circuit characteristics

Dataset constraints and parameters

P. Shrestha, A. Aversa, S. Phatharodom, and I. Savidis, "EDA-schema: A graph datamodel schema and open dataset for digital design automation," Proceedings of the ACM 
Great Lakes Symposium on VLSI (GLSVLSI), pp. 1–8, June 2024

170
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171

Generalized ML Flow – Problem Formulation

1:08 AM

• Formulation of the problem includes:
o Metric to be predicted

o Initial phase of the prediction
o Post-floorplan or post-placement

o Final phase of the prediction
o Post-routing

o Appropriate graph representation

o Whether the prediction is performed at graph level or node level

o Baseline metric
o Serves as a reference for the evaluation of the effectiveness of the model

P. Shrestha and I. Savidis, "EDA-ML: Graph representation learning framework for digital IC design automation," Proceedings of the International Symposium on Quality 
Electronic Design (ISQED), pp. 241–246, April 2024

171

172

Generalized ML Flow – Network Architecture

1:08 AM

• Generalized template of the network architecture

P. Shrestha and I. Savidis, "EDA-ML: Graph representation learning framework for digital IC design automation," Proceedings of the International Symposium on Quality 
Electronic Design (ISQED), pp. 241–246, April 2024

172
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173

Generalized ML Flow – Model Evaluation & Feature Importance Ranking

1:08 AM

• Feature importance ranking
o Evaluate importance of a feature on a model by leaving one 

feature out of each training run

o Primary features are identified that significantly influence the 
accuracy of the model

o Removing ineffective or redundant features based on sensitivity 
analysis enhances model performance

P. Shrestha and I. Savidis, "EDA-ML: Graph representation learning framework for digital IC design automation," Proceedings of the International Symposium on Quality 
Electronic Design (ISQED), pp. 241–246, April 2024

173

174

• Two distinct downstream metric prediction problems are used as case studies

Applications

1:08 AM

Arrival time prediction
network architecture

Interconnect parasitic prediction 
network architecture

P. Shrestha and I. Savidis, "EDA-ML: Graph representation learning framework for digital IC design automation," Proceedings of the International Symposium on Quality 
Electronic Design (ISQED), pp. 241–246, April 2024

174
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• Current research based on this flow are
a) arrival time prediction  b) interconnect capacitance prediction

EDA-ML

1:08 AM

175

P. Shrestha and I. Savidis, "EDA-ML: Graph representation learning framework for digital IC design automation," Proceedings of the International Symposium on Quality 
Electronic Design (ISQED), pp. 241–246, April 2024

175

176

OpenROAD as an ML for Chip Design Playground

1:08 AMSource: https://vlsicad.ucsd.edu/NEWS24/IITG-Kahng-v3.pptx

176
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• Introduction to Electronic Design Automation

• Machine learning techniques

• Case studies

• Standardizing ML for digital EDA

• Conclusions

Outline of Presentation
177

177

Summary of AI-driven Design Automation

• ML applied to the design space can be generalized to a set of problems
o Downstream Metric Prediction
o Circuit component optimization
o Circuit component generation

• Key circuit representations
o Image based
o Graph based
o Tabular based

• Benefits brought by ML for EDA
o Reduced simulations required, reduced turnaround time
o Design space exploration
o Prediction of parasitic impedances, reliability and variability
o Guide optimization or direct generation of schematic and layout design
o Migration and reuse of pre-trained models

178

178
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Future Directions

• Improve reliability, robustness, and interpretability of ML models for EDA

• Standardized Machine Learning
o Standardized benchmarks and applications
o Standardized ML flow
o Common evaluation protocols

• Meta-learning
o Learning what to learn

o Learn parameter values for base (pre-trained) models for circuit tasks
o Learning which model to learn

o Auto select the ML and optimization algorithms best suited for a given circuit task
o Learning how to learn

o Auto hyperparameter tuning of ML models and generation of pipeline for EDA

179

179

Future Directions

• Open Datasets and Leaderboards

180

180
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Conclusions
181

A. B. Kahng, “Machine Learning Applications in Physical Design: Recent Results and Directions”, Proceedings of the International Symposium on Physical Design 
(ISPD), pp. 68-73, March 2018

• EDA tools are like autonomous vehicles
o Currently, driver control/attention is still required

• EDA tools are like autonomous vehicles to be driven in more challenging road conditions

• Level of automation will keep rising

• More collaborations needed between
circuit design, academia and industry

181

http://ice.ece.drexel.edu
183
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